## ФИЗИКА

УДК 537.226.4: 519.673 DOI: 10.7868/S25000640180405

# НОВЫЙ ПОДХОД К ОПИСАНИЮ ДИЭЛЕКТРИЧЕСКИХ СПЕКТРОВ НА ОСНОВЕ МОДЕЛИ ГАВРИЛЯКА – НЕГАМИ

© 2018 г. Ю.И. Юрасов<sup>1, 2</sup>, А.В. Назаренко<sup>1</sup>

Аннотация. Проведены исследования частотных зависимостей диэлектрической проницаемости  $\epsilon'/\epsilon_0(f)$  и  $\epsilon''/\epsilon_0(f)$ , тангенса угла потерь  $\operatorname{tgd}(f)$  и электропроводности  $\gamma'(f)$  и  $\gamma''(f)$  свинецсодержащих (ЦТС при x = 0.50) и бессвинцовых керамик (KNN) в широком термочастотном интервале  $(T = 20-700 \text{ °C}; f = 25-10^6 \text{ Гц})$ . В твердых растворах системы ЦТС при x = 0,50 до сегнетоэлектрического фазового перехода формируются максимумы  $\epsilon'/\epsilon_0(f)$ , обусловленные «сильной» релаксацией. В бессвинцовых керамиках KNN образование аналогичных дополнительных экстремумов, но уже в пароэлектрической области (при  $T > T_c$ ) вызвано ростом сквозной проводимости, дающей значительный вклад в  $\epsilon''/\epsilon_{\rm n}(T)$  и, соответственно, в  ${\rm tg}\delta(T)$ . Для действительной и мнимой частей комплексной электропроводимости  $\gamma^*$  введены сингулярный и дополнительный члены соответственно. С учетом этих членов создана новая теоретическая модель описания кривых зависимостей  $\varepsilon'/\epsilon_0(f)$ ,  $\varepsilon''/\epsilon_0(f)$ ,  $tg\delta(f)$ ,  $\gamma'(f), \gamma''(f),$  основанная на модели Гавриляка – Негами, записанной для комплексной электропроводимости у\*. Приведены результаты сравнения описания диэлектрических спектров с использованием двух моделей Гавриляка – Негами: для комплексной диэлектрической проницаемости  $\varepsilon^*$  и для комплексной электропроводности у\*. Использование нового подхода позволяет полностью аппроксимировать экспериментальный набор изучаемых диэлектрических спектров, включая вклад сквозной проводимости в низкочастотную область спектров. При этом описание с помощью модели Гавриляка – Негами для комплексной диэлектрической проницаемости  $\epsilon^*$  дает сильные расхождения как в низкочастотной, так и высокочастотной области спектра. Полученные выражения позволяют проводить аппроксимацию экспериментальных спектров с высокой точностью в диапазоне частот от 1 до 108 Гц.

**Ключевые слова:** сегнетоэлектрик, бессвинцовая пьезокерамика, релаксация, комплексная электропроводность, датчики, ниобат калия, ЦТС.

# A NEW APPROACH TO DIELECTRIC SPECTRA DESCRIPTION BASED ON THE HAVRILIAK-NEGAMI MODEL

Yu.I. Yurasov<sup>1, 2</sup>, A.V. Nazarenko<sup>1</sup>

**Abstract.** The studies of frequency dependences of permittivity  $\varepsilon'/\varepsilon_0(f)$  and  $\varepsilon''/\varepsilon_0(f)$ , loss tangent  $\operatorname{tg}\delta(f)$  and conductivity  $\gamma'(f)$  and  $\gamma''(f)$  of lead-containing (PZT at x=0.50) and lead-free ceramics (KNN) in a wide thermo-frequency range (T=20-700 °C,  $f=25-10^6$  Hz) are carried out in this paper. It is shown that before the ferroelectric phase transition the maxima of  $\varepsilon'/\varepsilon_0(f)$  are formed in solid solutions of PZT systems at x=0.50 due to "strong" relaxation. The formation of similar additional extrema, but in the paraelectric phase (at  $T>T_c$ ), in the lead-free KNN ceramics is caused by reach-through conductivity increase, which makes a significant contribution to  $\varepsilon''/\varepsilon_0(T)$  and also  $\operatorname{tg}\delta(T)$ . Singular and additional terms are introduced in the imaginary and real parts of the complex conductivity  $\gamma^*$ . To describe  $\varepsilon'/\varepsilon_0(f)$ ,  $\varepsilon''/\varepsilon_0(f)$ ,  $\operatorname{tg}\delta(f)$ ,  $\gamma'(f)$ ,  $\gamma''(f)$  dependencies the new theoretical model based on complex conductivity  $\gamma^*$  Havriliak-Negami formula was created with these terms. The results of a comparison of the dielectric spectra description are presented using two Havriliak-

<sup>&</sup>lt;sup>1</sup> Федеральный исследовательский центр Южный научный центр РАН (Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation), Российская Федерация, 344006, г. Ростов-на-Дону, пр. Чехова, 41, e-mail: yucomp@ya.ru

<sup>&</sup>lt;sup>2</sup> Научно-исследовательский институт физики Южного федерального университета (Research Institute of Physics of Southern Federal University, Rostov-on-Don, Russian Federation), Российская Федерация, 344090, г. Ростов-на-Дону, 344090, пр. Стачки, 194

Negami models: for the complex permittivity  $\varepsilon^*$  and for the complex conductivity  $\gamma^*$ . It is shown that complete approximation of experimental dielectric spectra including reach-through conductivity contribution to the low-frequency region takes place in the use of the new approach. In other case, the Havriliak-Negami complex permittivity  $\varepsilon^*$  model description gives strong discrepancies, both in the low-frequency and high-frequency regions of the spectrum. The obtained expressions allows to approximate the experimental spectra with high accuracy in the frequency range from 1 to  $10^8$  Hz.

Keywords: ferroelectrics, lead-free ceramics, relaxation, complex conductivity, sensors, potassium niobate, PZT.

### ВВЕДЕНИЕ

В последние годы все больше внимания уделяется поиску и изучению бессвинцовых сегнетопьезокерамических материалов, способных заменить свинецсодержащие аналоги при разработке устройств нового поколения. Для этого необходимо детально и качественно исследовать механизмы и явления, происходящие в системах на основе свинца. Особенно это касается тех материалов, которые используются для создания большинства датчиков.

Изучение релаксорных свойств бессвинцовых сегнетопьезокерамик началось с открытия пьезокерамики  $Ba_{0,837}Sr_{0,093}Na_{0,07}Ti_{0,93}Nb_{0,07}O_3$  [1]. Недавно были созданы и апробированы альтернативы свинецсодержащим датчикам, в качестве активного элемента которых используются экологически чистые материалы на основе ниобатов щелочных металлов (KNN). На сегодняшний момент они являются наиболее перспективными материалами для дальнейшего применения [2–4].

При исследовании механизмов проявления свойств свинецсодержащих материалов часто рассматривают твердые растворы (TP) системы (1-x)PbZrO $_3$ -xPbTiO $_3$  (ЦTC). В качестве примера ее детального изучения можно привести обнаружение при концентрациях  $0,495 \le x \le 0,51$  и температуре T=200 К свойств с релаксационным поведением [5]. В этом случае диэлектрические спектры могут быть аппроксимированы формулой Коула — Коула, хотя ранее считалось, что данная система не является релаксорной, как, например, магнониобат свинца.

Самой общей моделью аппроксимации релаксации в сегнетопьезоматералах на сегодняшний день является формула Гавриляка — Негами (1) [6–8]. Варьируя параметры  $\alpha$  и  $\beta$  в пределах [0;1], можно получить законы Дебая ( $\alpha=0$ ,  $\beta=1$ ), Коула — Коула ( $0\leq\alpha\leq1$ ,  $\beta=1$ ) и Дэвидсона — Коула ( $\alpha=0$ ,  $0\leq\beta\leq1$ ).

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\varepsilon_{S} - \varepsilon_{\infty}}{(1 + (i\omega\tau)^{1-\alpha})^{\beta}},\tag{1}$$

где  $\varepsilon^* = \varepsilon' - i\varepsilon'' -$  полная комплексная диэлектри-

ческая проницаемость;  $\omega = 2\pi f$  — угловая частота, рад/с;  $\varepsilon_s$  — значения  $\varepsilon$  при  $\omega \to 0$  (низкочастотная (НЧ) область);  $\varepsilon_{\infty}$  — значения  $\varepsilon$  при  $\omega \to \infty$  (высокочастотная (ВЧ) область);  $\tau$  — наиболее вероятное время релаксации, с.

Некоторые более сложные модели, например распределение Диссадо – Хилла (2) [9–12], достаточно точно описывают экспериментально наблюдаемую дисперсию в диэлектриках:

$$\varepsilon^* = \frac{\varepsilon_{\infty} + \Delta \varepsilon (1 - n + m) \cdot {}_{2}F_{1}(1 - n, 1 - m; 2 - n; \frac{1}{1 + j\omega \tau})}{\Gamma(2 - n)\Gamma(m)(1 + j\omega \tau)^{1 - n}}, (2)$$

где  ${}_{2}F_{1}(..., ...; ...; ...)$  – гипергеометрическая функция Гаусса.

Подробно описывая указанные выше модели, авторы работ [11; 13-17] заметили, что при «сильных» и «слабых» релаксациях дополнительный вклад в мнимую часть диэлектрической проницаемости вносит сквозная проводимость. Считается, что она затрудняет исследование поляризационных процессов. Ее влияние уменьшает экстремумы температурно-частотных зависимостей тангенса угла диэлектрических потерь tgδ или мнимой части комплексной диэлектрической проницаемости є", по которым определяются энергии активации [18]. Кроме того, показано, что на микроуровне при сквозной электропроводности отсутствие взаимодействия между релаксаторами и частицами, переносящими заряд, мешает изучению поляризационных процессов. Влияние сквозной проводимости можно исключить, добавив в мнимую часть є" сингулярный член:

$$\varepsilon'' = \varepsilon'' + \frac{\gamma_{st}}{\omega \varepsilon_0},$$

где  $\varepsilon_0$  – диэлектрическая постоянная  $\approx 8,85 \cdot 10^{-12}$  [Кл²/Н\*м²];  $\gamma_{st}$  – электропроводность при  $\omega \to 0$  ( $\gamma'_{\alpha \to 0}$ ).

Учет выражения (3) позволяет не только более точно описывать «сильные» и «слабые» процессы релаксации, но и более точно аппроксимировать экспериментальные кривые.

Как известно, анализ релаксации можно проводить не только по частотным зависимостям  $\varepsilon^*$ , но и по комплексной электропроводности  $\gamma^* = \gamma' - i\gamma''$  [11; 16; 19]. Для определения действительной и мнимой частей  $\gamma'$  и  $\gamma''$  (4–6) предлагается использовать имеющиеся модели с пересчетом действительной  $\varepsilon'$  и мнимой  $\varepsilon''$  диэлектрической проницаемости в проводимости  $\gamma'$  и  $\gamma''$  ( $\gamma' = \varepsilon'' \omega \varepsilon_0$  и  $\gamma'' = \varepsilon'' \omega \varepsilon_0$ ):

$$\gamma^* = \overbrace{(\gamma_{st} + \varepsilon'' \omega \varepsilon_0)}^{\gamma'} + i \overbrace{(\varepsilon' \omega \varepsilon_0)}^{\gamma''}, \qquad (4)$$

$$\gamma' = \gamma' + \gamma_{st}, \tag{5}$$

$$tg\delta = \frac{\varepsilon'' + \frac{\gamma_{st}}{\omega \varepsilon_0}}{\varepsilon'}.$$
 (6)

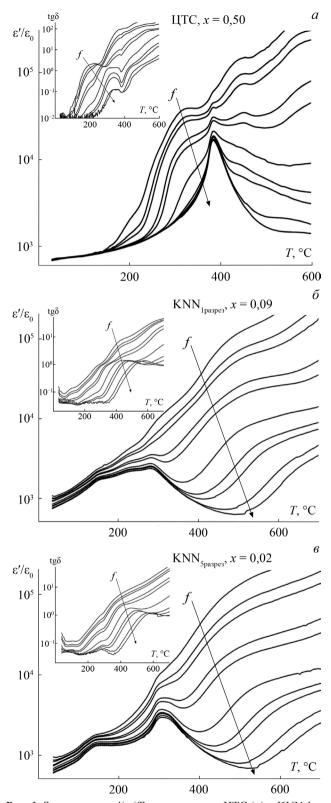
В частотных зависимостях мнимой части  $\gamma''(f)$  наблюдаются экстремумы аналогично дебаевскому распределению в зависимости tg $\delta$ . Причем в НЧ-области максимум  $\gamma''$  соответствует минимуму tg $\delta$ . Обратная ситуация происходит в ВЧ-части – минимуму  $\gamma''$  соответствует максимум tg $\delta$ . Эти экстремумы также наблюдаются и в распределении Коула –Коула. Однако применение моделей Гавриляка — Негами для  $\gamma^*$  при описании диэлектрических спектров ни в одной работе не отмечалось.

Целью настоящей работы является получение аппроксимационной модели Гавриляка — Негами для комплексной электропроводности  $\gamma^*$  для описания диэлектрических спектров свинецсодержащих и бессвинцовых керамик в широком термочастотном интервале (T=20—700 °C; f=25—106 Гц).

# ОБЪЕКТЫ, МЕТОДЫ ИХ ПОЛУЧЕНИЯ И ИССЛЕДОВАНИЯ

Объектами исследования являлись изготовленные в Центре коллективного пользования НИИ физики Южного федерального института (Ростов-на-Дону) наиболее характерный образец системы ЦТС при x=0,50 и 2 разреза ТР на основе ниобатов щелочных металлов (KNN), условно обозначенные следующим образом: 1 разрез  $(1-x)(\mathrm{Na}_{0,5}\mathrm{K}_{0,5})\mathrm{NbO}_3-x\mathrm{LisbO}_3$  (KNN $_{\mathrm{lpaspes}}$ ) при x=0,09; 5 разрез  $(\mathrm{Na}_{0,5}\mathrm{K}_{0,5})_{1-x}\mathrm{Li}_x(\mathrm{Nb}_{0,9}\mathrm{Ta}_{0,1})\mathrm{O}_3$  (KNN $_{\mathrm{spaspes}}$ ) при x=0,02.

Пьезокерамику ЦТС изготавливали из высокоочищенного сырья (ч, чда) по обычной керамической технологии. Обжиг проводили в две стадии с промежуточным помолом при температурах  $T_1 = T_2 = 870$  °C и времени выдержки  $t_1 = t_2 = 7$  ч. Спекание керамических заготовок диаметром 10 мм


и толщиной 1 мм осуществляли при температуре  $T_{\rm cn}$  = 1220 °C (3 ч).

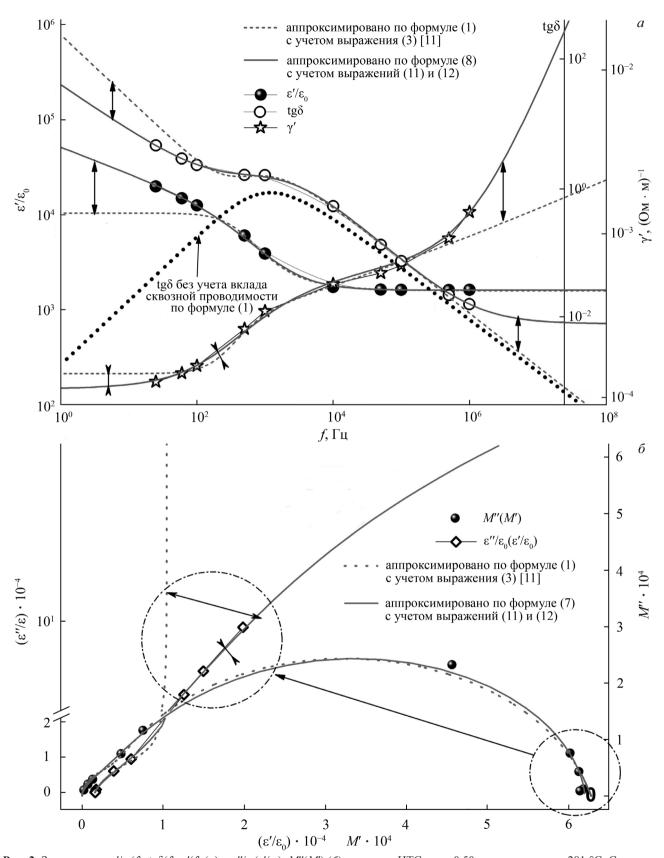
Образцы систем  $\mathrm{KNN}_{\mathrm{1paspes}}$  и  $\mathrm{KNN}_{\mathrm{5paspes}}$  были получены методом твердофазных реакций. В качестве исходного сырья использовали карбонаты натрия, калия и лития, а также оксиды ниобия, сурьмы и, в случае  $KNN_{_{5 \text{разрез}}}$ , тантала. Обжиг также проводили в две стадии при температурах  $T_1 = 850$  °C,  $T_2 = 870$  °C, одинаковых для обоих прекурсоров. Время изотермической выдержки для KNN <sub>Іразрез</sub> составило  $t_1 = t_2 = 5$  ч, а для  $\hat{KNN}_{Spaspes}$   $\tau_1 = \tau_2 = 6$  ч. Твердые растворы конечных составов синтезированы одностадийным обжигом при температуре T = 870 °C (6 ч). Приготовление шихты и помол как прекурсоров, так и ТР проведены в этиловом спирте. Синтезированный порошок гранулировали с водным раствором поливинилового спирта, брикетировали в виде таблеток Ø12 × 3 мм и спекали при температуре  $T_{cn} = 1120~{}^{\circ}{\rm C}~{\rm (KNN}_{1{\rm paspes}})$  и  $1130~{}^{\circ}{\rm C}$  $(KNN_{5разрез}), t_{cn} = 1,5 ч.$ 

Действительные и мнимые части относительной диэлектрической проницаемости и тангенс угла диэлектрических потерь ( $\varepsilon'/\varepsilon_0$ ,  $\varepsilon''/\varepsilon_0$ ,  $tg\delta$ ) на частотах (25–106) Гц исследовали ранее на специальных программно-аппаратных комплексах с использованием прецизионных измерителей иммитанса HIOKI 3522-50 и E7-20 в интервалах температур (20–700) °C [20; 21]. Предварительная аппроксимация моделей релаксационных процессов в диэлектрических спектрах осуществлялась по формуле (1) с помощью разработанной программы на ЭВМ [22].

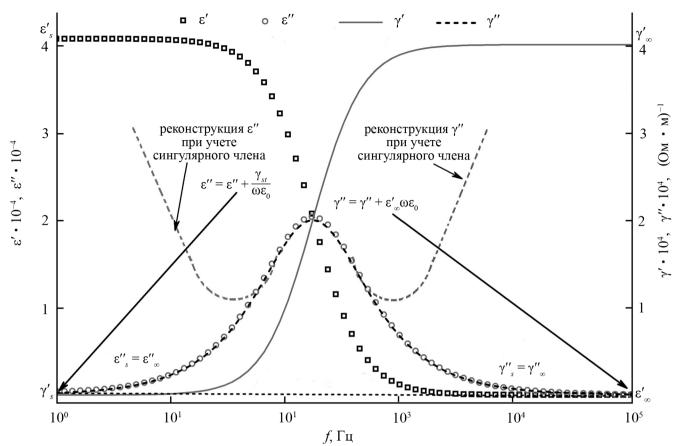
# ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ.

На рисунке 1 представлены температурные зависимости  $\varepsilon'/\varepsilon_0(T)\big|_f$  выбранных для изучения пьезокерамик ЦТС и KNN (1-го и 5-го разрезов) в широких интервалах внешних воздействий (T=20-700 °C и  $f=1-10^6$  Гц). Наблюдаемые максимумы при температурах  $T_{\rm c}^{\rm a}=385$  °C (рис. 1a),  $T_{\rm c}^{\rm f}=280$  °C (рис.  $1\delta$ ) и  $T_{\rm c}^{\rm B}=305$  °C (рис.  $1\epsilon$ ) связаны с переходом из сегнетоэлектрической в параэлектрическую фазу. В системе ЦТС начиная с  $T\approx200$  °C наблюдается формирование дополнительных экстремумов, сдвигающихся в сторону  $T_{\rm c}^{\rm a}$  и уменьшающихся при увеличении частоты f (рис. 1a). Образование дополнительных экстремумов в бессвинцовых керамиках KNN при температурах выше  $T_{\rm c}$  вызва-




**Рис. 1.** Зависимости  $\epsilon'/\epsilon_0(T)$  пьезокерамик ЦТС (a) и KNN 1-го ( $\delta$ ) и 5-го (a) разрезов при T=20–700 °C и f=1–106 Гц. Стрелки указывают направление роста a. На вставках показана зависимость a0 (a1).

**Fig. 1.** Dependences  $\varepsilon'/\varepsilon_0(T)$  of PZT (a), KNN<sub>1 paspes</sub> (δ) and KNN<sub>5 paspes</sub> (ε) ceramics at T = 20-700 °C and  $f = 1-10^6$  Γц. Arrows indicate the direction growth of frequency f. Dependence  $tg\delta(T)$  is shown in the pasted pictures.


но ростом сквозной проводимости, дающей значительный вклад в  $\varepsilon''/\varepsilon_0(T)$  и, соответственно, в  $tg\delta(T)$  (6) (рис. 16,  $\epsilon$ ). Указанные дополнительные экстремумы имеют релаксационный характер, который достаточно хорошо описывается моделями Коула — Коула, Дебая и т.д. Модель равновероятного распределения времен релаксации позволяет удовлетворительно аппроксимировать экспериментальные результаты [23].

На рисунке 2 для объекта ЦТС с x = 0.50 при температуре 281 °C изображены частотные зависимости действительной части диэлектрической проницаемости  $\varepsilon'/\varepsilon_o(f)$ , тангенса угла потерь  $tg\delta(f)$  и действительной части проводимости  $\gamma'(f)$  (рис. 2a), а также построены диаграммы  $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$  (Коула — Коула) и их модулей M''(M') (рис.  $2\delta$ ) . Из рисунков видно, что поведение экспериментальных кривых имеет характер «сильного» релаксационного процесса с высокой сквозной проводимостью [11; 15; 16]. При аппроксимации с помощью модели Гавриляка – Негами (1) с учетом сингулярного члена (3) были получены следующие характеристики:  $\tau_{\text{расч.}}=0.4\cdot 10^{-3},~\alpha=0,~\beta=0.81,~\epsilon_{\text{s}}=10438,$   $\epsilon_{\text{s}}=1593,~\gamma_{\text{st}}=14\cdot 10^{-5}.$  Однако в низко- ( $f>300~\Gamma$ ц) и высокочастотной ( $f > 3 \cdot 10^5 \, \Gamma$ ц) областях достаточно хорошо заметны расхождения. Они, скорее всего, обуславливаются развитием некоторых, еще не объясненных, процессов, происходящих в этой части спектра. Это говорит о том, что модель соответствует каким-то конкретным процессам, отличающимся от реально происходящих. Остается открытым вопрос, почему сингулярный член позволяет решить проблему описания образующегося минимума на зависимостях  $tg\delta(f)$  и, соответственно, на  $\varepsilon''/\varepsilon_0(f)$  и  $\gamma''(f)$ , но плавные переходы на экспериментальных кривых в НЧ-области никак не описываются аппроксимационными моделями.

В работах [15; 16] отмечено, что между частотными зависимостями  $\varepsilon^*$ ,  $\gamma^*$  и электрическим модулем  $M^*$  имеется взаимосвязь. В аппроксимационных моделях она устанавливается через мнимую и действительную части диэлектрической проницаемости ( $\gamma' = \varepsilon'' \omega \varepsilon_0$  и  $\gamma'' = \varepsilon' \omega \varepsilon_0$ ). Учитывая вышесказанное и принимая во внимание, что зависимость  $\gamma'(f)$  является, можно сказать, «инверсионным» представлением зависимости  $\varepsilon'/\varepsilon_0(f)$  (НЧ-области соответствуют  $\varepsilon_s$  — максимальное значение  $\varepsilon'$  и  $\gamma_s$  — минимальное значение  $\varepsilon'$  и  $\gamma_s$  — максимальное значение  $\varepsilon'$  и  $\gamma_s$  — максимальное значение  $\varepsilon'$  и  $\varepsilon_s$  — максимальное значение  $\varepsilon'$  можно предположить, что  $\varepsilon_s$ 



**Рис. 2.** Зависимости  $\epsilon'/\epsilon_0(f)$ ,  $tg\delta(f)$ ,  $\gamma'(f)$  (a) и  $\epsilon''/\epsilon_0(\epsilon'/\epsilon_0)$ , M''(M') ( $\delta$ ) керамики ЦТС с x=0,50 при температуре 281 °C. Стрелками ( $\updownarrow$ ) показаны расхождения между аппроксимационной моделью Гавриляка – Негами для  $\gamma^*$  (с учетом выражений (11) и (12)) и  $\epsilon^*$ . **Fig. 2.** Dependences  $\epsilon'/\epsilon_0(f)$ ,  $tg\delta(f)$ ,  $\gamma'(f)$  (a) and  $\epsilon''/\epsilon_0(\epsilon'/\epsilon_0)$ , M''(M') ( $\delta$ ) of PZT ceramics with x=0.50 at 281 °C. The discrepancies between Havriliak-Negami approximation models for  $\gamma^*$  (with use (11) and (12)) and  $\epsilon^*$  are shown by arrows ( $\updownarrow$ ).



**Рис. 3.** Моделирование зависимостей  $\varepsilon'/\varepsilon_0(f)$ ,  $tg\delta(f)$ ,  $\gamma'(f)$  по формуле (7) с учетом его решения (8, 9). **Fig. 3.** The simulation of dependences  $\varepsilon'/\varepsilon_0(f)$ ,  $tg\delta(f)$ ,  $\gamma'(f)$  by formula (7) with its solution (8, 9).

связана аналогичными с  $\varepsilon^*$  соотношениями. Таким образом, используя формулу (1) Гавриляка — Негами для  $\varepsilon^*$ , получаем модель для аппроксимации комплексной электропроводности  $\gamma^*$  в виде:

$$\gamma^* = \gamma_{\infty} + \frac{\gamma_{S} - \gamma_{\infty}}{(1 + (i\omega\tau)^{1-\alpha})^{\beta}}, \tag{7}$$

где  $\gamma_s$  — значения  $\gamma$  при  $\omega \to 0$ ;  $\gamma_{\infty}$  — значения  $\gamma$  при  $\omega \to \infty$ .

Решением этого выражения является:

$$\gamma^* = \overbrace{\left(\gamma_{\infty} + \frac{E}{D} \frac{(\gamma_{S} - \gamma_{\infty})}{(E^2 + F^2)}\right)}^{\gamma^*} + i \overbrace{\left(\frac{F}{D} \frac{(\gamma_{\infty} - \gamma_{S})}{(E^2 + F^2)}\right)}^{\gamma^{\prime\prime\prime}},$$

$$A = \cos\varphi l,$$

$$B = \sin\varphi l,$$

$$C = (\omega\tau)^{1-\alpha},$$

$$D = \sqrt{(1 + CA)^2 + (CB)^2}^{\beta},$$

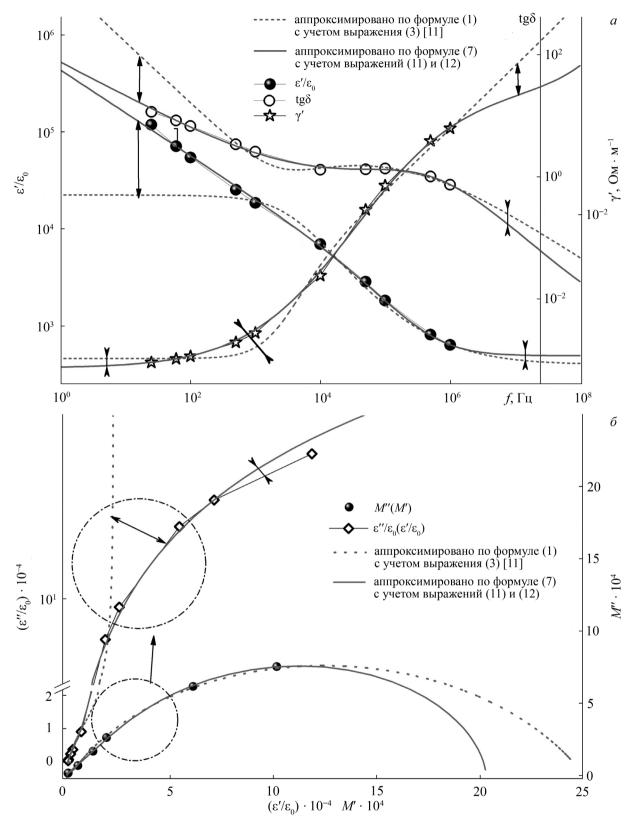
$$E = \cos\varphi 2,$$

$$F = \sin\varphi 2,$$

$$\varphi l = (1 - \alpha) \frac{\pi}{2} + 2\pi k,$$

$$\varphi 2 = \left(\beta \cdot \operatorname{arctg} \frac{CB}{1 + CA}\right) + 2\pi k.$$

$$(8)$$


Для описания параметров по формуле (7) было произведено случайное моделирование  $\gamma'$ ,  $\gamma''$  с пересчетом в  $\epsilon'' = \gamma'/\omega\epsilon_0$  и  $\epsilon' = \gamma''/\omega\epsilon_0$ , результат которого приведен на рисунке 3. При этом были получены следующие аппроксимационные параметры:  $\tau_{\text{расч.}} = 1 \cdot 10^{-8} \ (\text{c}), \alpha = 0, \beta = 1, \gamma_{\text{s}} = 1 \cdot 10^{-8}, \gamma_{\infty} = 4 \cdot 10^{-4}.$  Данный результат подтверждает правильность вышеприведенных предположений и произведенных расчетов по формулам (8–9).

При использовании модели Гавриляка — Негами для  $\gamma^*$  (7) по аналогии с сингулярным членом  $\gamma_{s/}\omega\epsilon_0$  (3), который влияет на резкий рост  $\epsilon''/\epsilon_0(f)$  при  $\omega \to 0$  (вклад сквозной проводимости) [11], для описания частотной зависимости  $\gamma'(f)$  в выражении (5) сингулярный член  $\gamma_{st}$  тоже должен зависеть от частоты. Учитывая вышесказанное, введем следующие выражения:

$$\gamma_{st} = \varepsilon''_{\infty} \omega \varepsilon_{0},$$
(10)

$$\gamma' = \gamma' + \epsilon'' \omega \epsilon_0, \tag{11}$$

где  $\epsilon''_{\infty}\omega\epsilon_0$  — сингулярный член, показывающий вклад сквозной проводимости в  $\gamma'$ ;  $\epsilon''_{\infty}$  — значения  $\epsilon''$  при  $\omega \to \infty$ .



**Рис. 4.** Зависимости  $\epsilon'/\epsilon_0(f)$ ,  $tg\delta(f)$ ,  $\gamma'(f)$  (a) и  $\epsilon''/\epsilon_0(\epsilon'/\epsilon_0)$ , M''(M') ( $\delta$ ) керамики KNN  $_{1pa3pg3}$  при температуре 500 °C. Стрелками ( $\updownarrow$ ) по-казаны расхождения между аппроксимационной моделью Гавриляка – Негами для  $\gamma'$  ( $\tau_{pacq}=0,1\cdot10^{-5}$ ,  $\alpha=0,44$ ,  $\beta=0,57$ ,  $\epsilon'_{\infty}=493$ ,  $\epsilon''_{\infty}=2$ ,  $\gamma_s=17,97\cdot10^{-4}$ ,  $\gamma_{\infty}=467,4\cdot10^{-4}$ ) и для  $\epsilon^*$  ( $\tau_{pacq}=0,42\cdot10^{-4}$ ,  $\alpha=0,2$ ,  $\beta=0,85$ ,  $\epsilon_{\infty}=399$ ,  $\epsilon_{s}=22439$ ,  $\gamma_{sf}=20\cdot10^{-4}$ ). **Fig. 4.** Dependences  $\epsilon'/\epsilon_0(f)$ ,  $\tau'(f)$  (a) and  $\epsilon''/\epsilon_0(\epsilon'/\epsilon_0)$ ,  $\tau'(f)$  (a) of KNN  $_{1pa3pg3}$  ceramics at 500 °C. The discrepancies between Havriliak-Negami approximation models for  $\gamma^*$  ( $\tau_{pacq}=0.1\cdot10^{-5}$ ,  $\alpha=0.44$ ,  $\beta=0.57$ ,  $\epsilon'_{\infty}=493$ ,  $\epsilon''_{\infty}=2$ ,  $\gamma_s=17.97\cdot10^{-4}$ .  $\gamma_{\infty}=467.4\cdot10^{-4}$ ) and  $\epsilon^*$  ( $\tau_{pacq}=0.42\cdot10^{-4}$ ,  $\alpha=0.2$ ,  $\beta=0.85$ ,  $\epsilon_{\infty}=399$ ,  $\epsilon_{s}=22439$ ,  $\gamma_{sf}=20\cdot10^{-4}$ ) are shown by arrows ( $\updownarrow$ ).

Ответ на вопрос о возможности аппроксимирования плавно уходящей вверх экспериментальной зависимости  $\gamma'(f)$  при  $\omega \to \infty$  (ВЧ-область) не является очевидным. Если на поведение зависимости  $\varepsilon''/\varepsilon_0(f)$  влияет сквозная проводимость, для учета которой добавляется сингулярный член, то, вероятно, и на зависимость  $\gamma''(f)$  также влияет сквозная проводимость. На основе экспериментальных данных и формулы (11) были получены следующие выражения:

$$\gamma'' = \gamma'' + \varepsilon_{\infty} \omega \varepsilon_{0}, \tag{12}$$

$$\gamma''_{st} = \epsilon'_{\infty} \omega \epsilon_0, \tag{13}$$

где  $\gamma''_{st}$  — значения  $\gamma''$  при  $\omega \to 0$ ;  $\epsilon'_{\infty}\omega\epsilon_{0}$  — дополнительный член, показывающий вклад сквозной проводимости в  $\gamma''$ ;  $\epsilon'_{\infty}$  — значения  $\epsilon'$  при  $\omega \to \infty$ .

Если для аппроксимации  $\varepsilon'/\varepsilon_0(f)$ ,  $\operatorname{tg}\delta(f)$  и  $\gamma'(f)$ , а также  $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$ , M''(M') использовать скорректированную модель Гавриляка - Негами (7) и полученные выражения (10)–(13), то видно, что расхождение с экспериментальными точками практически полностью отсутствует в отличие от модели (1) с использованием сингулярного члена (3) (рис. 2a,  $\delta$ ). Отметим, что при использовании данной модели варьирование параметров распределения  $\alpha$ ,  $\beta$ , и  $\epsilon'_{\infty}\omega\epsilon_{0}$  влияет на схождение в НЧ-области  $(\omega \to 0)$ , а введенный дополнительный член  $\varepsilon''_{\omega}\omega \varepsilon_{0}$ отвечает за поведение расчетной кривой ВЧ-области ( $\omega \to \infty$ ). При этом дополнительный член  $\epsilon''_{\alpha}\omega\epsilon_{0}$ показывает, на сколько усложняется картина релаксационного поведения в ВЧ-области. Полученные параметры в результате использования данной модели,  $\tau_{\text{pacy.}} = 0,4 \cdot 10^{-3}, \ \alpha = 0,28, \ \beta = 0,35, \ \epsilon'_{_{\infty}} = 1614,$  $\epsilon''_{_\infty}$  = 12,  $\gamma_{_S}$  = 11,2  $\cdot$  10<sup>-5</sup>,  $\gamma_{_\infty}$  = 75,6  $\cdot$  10<sup>-5</sup>, в принципе соответствуют аналогичным параметрам для модели (1), за исключением α и β.

Если учтем формулу (7) и выражения (11) и (12), то получаем формулу для нового подхода к описанию диэлектрических спектров на основе модели Гавриляка – Негами:

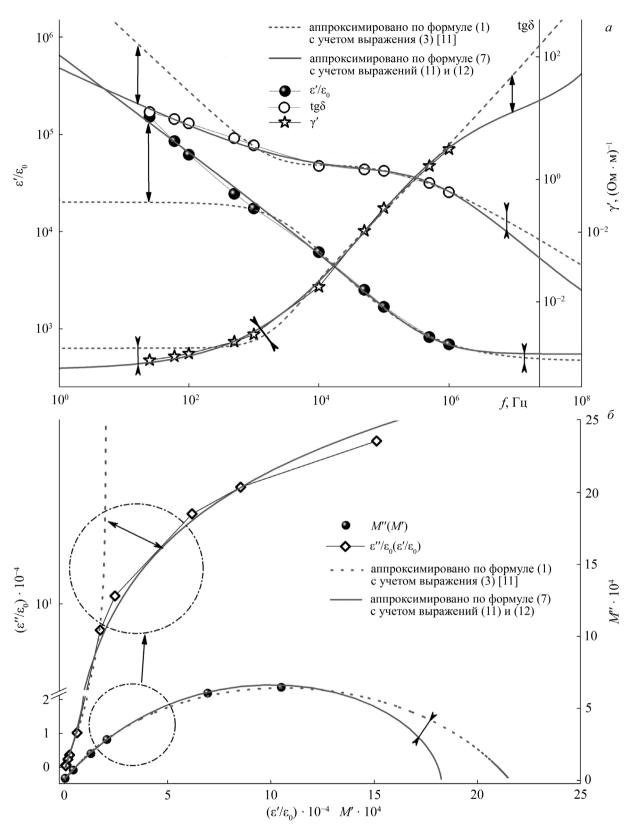
$$\gamma^* = \gamma_{\infty} + \frac{\gamma_S - \gamma_{\infty}}{(1 + (i\omega\tau)^{1-\alpha})^{\beta}} + \varepsilon''_{\infty} \omega \varepsilon_0 + i\varepsilon'_{\infty} \omega \varepsilon_0. (14)$$

Для проверки полученных результатов представленная модель была использована для аппроксимации диэлектрических спектров еще двух объектов – бессвинцовых керамик KNN<sub>1разрез</sub> (рис. 4) и KNN<sub>5разрез</sub> (рис. 5) при температуре 500 °C. Характер представленных на рисунках зависимостей соответствует «сильному» релаксационному процессу в

высокотемпературной области [11; 13; 14]. Видно. что использование новой модели (14) демонстрирует практически полное схождение расчетных кривых с экспериментальными данными. Это говорит о работоспособности данной модели. Стандартная же модель Гавриляка — Негами для  $\varepsilon^*$  с учетом вклада сквозной проводимости имеет достаточную сходимость для описания процессов релаксации, однако в НЧ- и ВЧ-областях сильно расходится с экспериментальной кривой. Это, вероятно, связано с механизмами или явлениями, происходящими в пьезокерамиках в низкочастотной области, ниже 60 Гц, и продолжающимися в инфранизкочастотном диапазоне, что требует дополнительного исследования и анализа. Зависимости M''(M') (рис. 26, 46,56) при двух моделях практически везде имеют хорошую сходимость и служат для подтверждения правильности сделанных аппроксимаций.

## ЗАКЛЮЧЕНИЕ

Получена теоретическая модель кривых зависимостей  $\varepsilon'/\varepsilon_0(f)$ ,  $\varepsilon''/\varepsilon_0(f)$ ,  $\operatorname{tgd}(f)$ ,  $\gamma'(f)$ ,  $\gamma''(f)$ , позволяющая хорошо описывать экспериментальный набор зависимостей диэлектрических спектров.


Модель Гавриляка — Негами для комплексной электропроводимости  $\gamma^*$  в отличие от модели, записанной для комплексной диэлектрической проницаемости  $\epsilon^*$ , позволяет получить гораздо более лучшую сходимость диэлектрических спектров в НЧ-области (вклад сквозной проводимости).

Использование дополнительного члена в мнимой части проводимости  $\gamma''(f)$  позволяет хорошо описать высокочастотную часть экспериментальной кривой и показывает, насколько усложняется картина релаксационного поведения в ВЧ-области.

Полученные члены действительной (сингулярный) и мнимой (дополнительный) частей в модели Гавриляка — Негами для комплексной электропроводимости  $\gamma^*$  зависят от предельных значений мнимой и действительной частей  $\epsilon^*$  при  $\omega \to \infty$ .

Показано, что в ТР системы ЦТС при x = 0,50 до фазового перехода в параэлектрическую область и в ТР системы KNN после фазового перехода формируются максимумы  $\varepsilon'/\varepsilon_0(f)$ , которые обусловлены «сильной» релаксацией.

Получены выражения, позволяющие производить аппроксимацию экспериментальных спектров с высокой точностью в диапазоне частот от 1 до  $10^8$  Гц.



**Рис. 5.** Зависимости  $\epsilon'/\epsilon_0(f)$ ,  $tg\delta(f)$ ,  $\gamma'(f)$  (a) и  $\epsilon''/\epsilon_0(\epsilon'/\epsilon_0)$ , M''(M') ( $\delta$ ) керамики KNN  $_{\text{spaspes}}$  при температуре 500 °C. Стрелками ( $\updownarrow$ ) по-казаны расхождения между аппроксимационной моделью Гавриляка – Негами для  $\gamma^*$  ( $\tau_{\text{pacu}} = 0.53 \cdot 10^{-6}$ ,  $\alpha = 0.5$ ,  $\beta = 0.68$ ,  $\epsilon'_{\infty} = 548$ ,  $\epsilon''_{\infty} = 2$ ,  $\gamma_s = 24 \cdot 10^{-4}$ ,  $\gamma_{\infty} = 442$ ,  $\gamma \cdot 10^{-4}$ ) и для  $\epsilon^*$  ( $\tau_{\text{pacu}} = 0.42 \cdot 10^{-4}$ ,  $\alpha = 0.22$ ,  $\beta = 0.84$ ,  $\epsilon_{\infty} = 463$ ,  $\epsilon_{s} = 20168$ ,  $\gamma_{sf} = 30 \cdot 10^{-4}$ ). **Fig. 5.** Dependences  $\epsilon'/\epsilon_0(f)$ ,  $tg\delta(f)$ ,  $tg\delta($ 

# БЛАГОДАРНОСТИ

Авторы выражают благодарность д.ф.-м.н. профессору Л.А. Резниченко. Работа выполнена при поддержке РФФИ № 17-08-01724 А в рамках госзадания Южного научного центра РАН, № госрегистрации проекта 01201354240, на оборудовании Центра коллективного пользования «Электромагнитные, электромеханиче-

#### СПИСОК ЛИТЕРАТУРЫ

- Ravez J., Simon A. 2001. Some solid state chemistry aspects of lead-free relaxor ferroelectrics. *J. Solid State Chem.* 162(2): 260–265. doi: 10.1006/jssc.2001.9285
- Юрасов Ю.И., Павленко А.В., Вербенко И.А., Садыков Х.А., Резниченко Л.А. 2015. Датчики детонации на основе бессвинцовых композиционных сегнетопьезоматериалов. Конструкции из композиционных материалов. 4: 81–83.
- 3. Nahm S. Lead-free piezoelectric material for vehicle knock sensor, method for manufacturing same, and vehicle knock sensor comprising same. Patent WO 2015163685 (A1), South Korea, 29.10.2015.
- Юрасов Ю.И., Павленко А.В., Вербенко И.А., Резниченко Л.А., Садыков Х.А. 2015. Датчик детонации. Патент РФ № 158291. Заявитель и патентообладатель Южный федеральный университет, № заявки 2015132986. Заявл. 06.08.2015, опубл. 27.12.2015. Бюл. № 36.
- 5. Андрюшина И.Н., Андрюшин К.П., Разумовская О.Н., Шилкина Л.А., Резниченко Л.А., Юрасов Ю.И. 2010. Диэлектрическая спектроскопия твердых растворов системы  $PbZr_{1-x}Ti_xO_3$  (0.495  $\leq x \leq$  0.51) в диапазоне температур 100—300 К и частот (1  $\cdot$  10<sup>-2</sup> 2  $\cdot$  10<sup>7</sup>) Гц. Известия РАН. Серия физическая. 74(8): 1178–1180.
- 6. Волков А.С., Копосов Г.Д., Перфильев Р.О., Тягунин А.В. 2018. Анализ экспериментальных результатов по модели Гавриляка—Негами в диэлектрической спектроскопии. Оптика и спектроскопия. 124(2): 206–209. doi: 10.21883/OS.2018.02.45525.200-17
- Havriliak S., Negami S. 1966. A complex plane analysis of α dispersions in some polymer systems. *Journal of Polymer Science Part C*. 14(1): 99–117. doi: 10.1002/polc.5070140111
- Турик А.В., Радченко Г.С., Чернобабов А.И., Турик С.А., Супрунов В.В. 2006. Диэлектрические спектры неупорядоченных сегнетоактивных систем: поликристаллы и композиты. Физика твердого тела. 48(6): 1088–1090.
- 9. Dissado L.A., Hill R.M. 1979. Non-exponential decay in dielectrics and dynamics of correlated systems. *Nature*. 279(5715): 685–689. doi: 10.1038/279685a0
- Богатин А.С., Турик А.В., Андреев Е.В., Игнатова Ю.А., Ковригина С.А., Богатина В.Н. 2012. Релаксационные поляризации в диэлектриках при распределении релаксаторов Диссадо—Хилла. Письма в ЖТФ. 38(2): 58–64.
- 11. Богатин А.С., Турик А.В. 2013. *Процессы релаксационной поляризации в диэлектриках с большой сквозной электропроводностью*. Ростов н/Д, Феникс: 256 с.

ские и тепловые свойства твердых тел» НИИ физики Южного федерального университета и Центра коллективного пользования «Объединенный центр научно-технологического оборудования ЮНЦ РАН (исследование, разработка, апробация)», а также при поддержке Минобрнауки России: проекты № 3.6371.2017/8.9, № 3.6439.2017/8.9 (базовая часть государственного задания).

- Yeung Y.Y., Shin F.G. 1991. Pulse response functions of dielectric susceptibility. *Journal of Materials Science*. 26(7): 1781–1787. doi: 10.1007/BF00543602
- 13. Богатин А.С., Турик А.В., Ковригина С.А., Богатина В.Н., Андреев Е.В. 2010. Причина разделения релаксационных процессов поляризации на сильные и слабые. *Известия РАН. Серия физическая*. 74(8): 1115–1117.
- 14. Богатин А.С., Турик А.В., Богатина В.Н., Ковригина С.А., Андреев Е.В. 2011. Сильные и слабые процессы релаксационной поляризации в твердых диэлектриках. *Известия РАН. Серия физическая*. 75(10): 1498–1500.
- 15. Богатин А.С., Лисица И.В., Богатина С.А. 2002. Влияние сквозной проводимости на определение характеристик процессов релаксационной поляризации. *Письма в ЖТФ*. 28(18): 61–66.
- 16. Богатин А.С. 2012. Релаксационные поляризации: сильные и слабые процессы. *Физика твердого тела*. 54(1): 59–65.
- 17. Богатин А.С., Андреев Е.В., Ковригина С.А., Игнатова Ю.А., Буланова А.Л. 2015. Определение параметра релаксационной поляризации в диэлектриках с большой электропроводностью. *Известия РАН. Серия физическая*. 79(6): 812–814. doi: 10.7868/S0367676515060046
- 18. Богородицкий Н.П., Волокобинский Ю.М., Воробьев А.А., Тареев Б.М. 1965. *Теория диэлектриков*. М., Энергия: 342 с.
- 19. Андреев Е.В. 2015. Релаксационная поляризация в диэлектриках с большой сквозной электропроводностью. Дис. ... канд. физ.-мат. наук. Ростов н/Д: 359 с.
- 20. Юрасов Ю.И. Автоматический измерительный стено электрофизических параметров сегнето-пьезоматериалов в ишроком интервале температур и частот. Патент РФ № 66552. Заявитель и патентообладатель Южно-Российский государственный технический университет (Новочеркасский политехнический институт), № заявки 2007102548. Заявл. 23.01.2007, опубл. 21.05.2007. Бюл. № 25.
- 21. Павленко А.В., Юрасов Ю.И. *Автоматический стенд для измерения диэлектрических параметров пьезоэлектрических материалов. Патент РФ №119894.* Заявитель и патентообладатель Южный федеральный университет, № заявки 2012124140. Заявл. 08.06.12, опубл. 27.08.2012. Бюл. № 24.
- 22. Юрасов Ю.И. 2007. Программа для проведения расчета мнимой и действительной частей диэлектрической проницаемости по формулам Коула Коула, Дэвидсона Коула, Дебая и Гаврильяка Негами (Анализ Коула Коула ЮКОМП 4.0). Свидетельство об официальной регистрации программы для ЭВМ РФ, № 2007611184.

23. Павленко А.В., Турик А.В., Резниченко Л.А., Шилкина Л.А., Константинов Г.М. 2011. Диэлектрическая релаксация в керамике  $PbFe_{1/2}Nb_{1/2}O_3$ . Физика твердого тела. 53(9): 1773–1776.

#### REFERENCES

- Ravez J., Simon A. 2001. Some solid state chemistry aspects of lead-free relaxor ferroelectrics. *J. Solid State Chem.* 162(2): 260–265. doi: 10.1006/jssc.2001.9285
- Yurasov Yu.I., Pavlenko A.V., Verbenko I.A., Sadykov H.A., Reznichenko L.A. 2015. Knock sensors based on lead-free piezoceramics. Konstruktsii iz kompozitsionnykh materialov. 4: 81–83. (In Russian).
- Nahm S. 2015. Lead-free piezoelectric material for vehicle knock sensor, method for manufacturing same, and vehicle knock sensor comprising same. Patent WO 2015163685 (A1), South Korea, 29.10.2015.
- 4. Yurasov Yu.I., Pavlenko A.V., Verbenko I.A., Reznichenko L.A. Sadykov H.A. Datchik detonatsii. Patent RF, № 158291. [Knock sensor. Patent of the Russian Federation No 158291]. Applicant and rights holder Southern Federal University, application number 2015132986. The date of application 6 August 2015, published 27 December 2015. (In Russian).
- 5. Andryushina I.N., Andryushin K.P., Razumovskaya O.N., Shilkina L.A., Reznichenko L.A., Yurasov Yu.I. 2010. Dielectric spectroscopy of PbZr<sub>1</sub>  $_x$ Ti $_x$ O<sub>3</sub> solid solutions (0.495  $\le x \le 0.51$ ) in a temperature range of 100–300 K at frequencies from 1  $\times$  10<sup>-2</sup> to 2  $\times$  10<sup>7</sup> Hz. *Bulletin of the Russian Academy of Sciences: Physics*. 74(8): 1127–1129. doi: 10.3103/S1062873810080265
- Volkov A.S., Koposov G.D., Perfil'ev R.O., Tyagunin A.V. 2018. Analysis of experimental results by the Havriliak–Negami model in dielectric spectroscopy. *Optics and Spectroscopy*. 124(2): 202–205. doi: 10.1134/S0030400X18020200
- Havriliak S., Negami S. 1966. A complex plane analysis of α dispersions in some polymer systems. *Journal of Polymer Science Part C*. 14(1): 99–117. doi: 10.1002/polc.5070140111
- Turik A.V., Radchenko G.S., Chernobabov A.I., Turik S.A., Suprunov V.V. 2006. Dielectric spectra of disordered ferroelectric systems: polycrystals and composites. *Physics of the solid state*. 48(6): 1157–1159. doi: 10.1134/ S1063783406060436
- Dissado L.A., Hill R.M. 1979. Non-exponential decay in dielectrics and dynamics of correlated systems. *Nature*. 279(5715): 685–689. doi: 10.1038/279685a0
- Bogatin A.S., Turik A.V., Andreev E.V., Ignatova Yu.A., Kovrigina S.A., Bogatina V.N. 2012. Relaxation polarizations in dielectrics with Dissado-Hill relaxator distribution. *Technical Physics Letters*. 38(1): 82–84. doi: 10.1134/ S1063785012010208
- 11. Bogatin A.S., Turik A.V. 2013. Protsessy relaksatsionnoy polyarizatsii v dielectrikakh s bolshoy skvoznoy electroprovodnost'yu. [Processes of relaxation polarization in dielectrics with large through conductivity]. Rostov-on-Don, Feniks: 256 p. (In Russian).
- Yeung Y.Y., Shin F.G. 1991. Pulse response functions of dielectric susceptibility. *Journal of Materials Science*. 26(7): 1781–1787. doi: 10.1007/BF00543602

- Bogatin A.S., Turik A.V., Kovrigina S.A., Bogatina V.N., Andreev E.V. 2010. The reason for division of polarization relaxation processes into strong and weak. *Bulletin of the Russian Academy of Sciences: Physics*. 74(8): 1066–1068. doi: 10.3103/S1062873810080083
- 14. Bogatin A.S., Turik A.V., Bogatina V.N., Kovrigina S.A., Andreev E.V. 2011. Strong and weak polarization relaxation processes in solid dielectrics. *Bulletin of the Russian Academy of Sciences: Physics*. 75(10): 1413–1415. doi: 10.3103/ S1062873811100030
- Bogatin A.S., Lisitsa I.V., Bogatina S.A. 2002. The effect of percolation conductivity on the characteristics of relaxation polarization processes. *Technical Physics Letters*. 28(9): 779– 781. doi: 10.1134/1.1511783
- Bogatin A.S. 2012. Relaxation polarizations: strong and weak processes. *Physics of the Solid State*. 54(1): 62–69. doi: 10.1134/S1063783412010064
- Bogatin A.S., Andreev E.V., Kovrigina S.A., Ignatova Y.A., Bulanova A.L. 2015. Determining the relaxation polarization parameters in dielectrics with high electrical conductivity. Bulletin of the Russian Academy of Sciences: Physics. 79(6): 729–731. doi: 10.3103/S1062873815060040
- Bogoroditskiy N.P., Volokobinskiy Yu.M., Vorob'ev A.A., Tareev B.M. 1965. *Teoriya dielektrikov*. [*Theory of dielectrics*]. Moscow, Energiya: 342 p. (In Russian).
- 19. Andreev E.V. 2015. Relaksatsionnaya polyarizatsiya v dielektrikakh s bolshoy skvoznoy electroprovodnost'yu. [Relaxation polarization in dielectrics with large through conductivity. PhD Thesis]. Rostov-on-Don: 359 p. (In Russian).
- 20. Yurasov Yu.I. 2007. Avtomaticheskiy izmeritel'nyy stend elektrofizicheskikh parametrov segneto-p'yezomaterialov v shirokom intervale temperatur i chastot. Patent RF № 66552. [Automatic measuring bench of electrophysical parameters of ferro-piezomaterials in a wide range of temperatures and frequencies. Patent of the Russian Federation No 66552]. Applicant and rights holder South-Russian State Technical University, application number 2007102548. The date of application 23 January 2007, published 21 May 2007. Bul. № 25. (In Russian).
- 21. Pavlenko A.V., Yurasov Yu.I. Avtomaticheskiy stend dlya izmereniya dielektricheskikh parametrov p'yezoelektricheskikh materialov. Patent RF №119894. [Automatic test bench for measuring dielectric parameters of piezoelectric materials. Patent of the Russian Federation No 119894]. Applicant and rights holder Southern Federal University, application number 2012124140. The date of application 8 June 2012, published 27 August 2012. Bul. № 24. (In Russian).
- 22. Yurasov Yu.I. 2007. Programma dlya provedeniya rascheta mnimoy i deystvitel'noy chastey dielektricheskoy pronitsayemosti po formulam Koula Koula, Devidsona Koula, Debaya i Gavril'yaka Negami (Analiz Koula Koula YUKOMP 4.0). Svidetel'stvo ob ofitsial'noy registratsii programmy dlya EVM RF, №2007611184. [Calculation of imaginary and real parts of dielectric permittivity according to the formulas of Cole-Cole, Davidson-Cole, Debye and Havriliak-Negami (Cole-Cole analysis YUKOMP 4.0), No 2007611184]. (In Russian).
- 23. Pavlenko A.V., Turik A.V., Reznichenko L.A., Shilkina L.A., Konstantinov G.M. 2011. Dielectric relaxation in the PbFe<sub>1/2</sub>Nb<sub>1/2</sub>O<sub>3</sub> ceramics. *Physics of the Solid State*. 53(9): 1872–1875. doi: 10.1134/S106378341109023X