БИОЛОГИЯ

УДК 612.26.014.46:546.49

ТОКСИЧЕСКОЕ ДЕЙСТВИЕ СОЕДИНЕНИЙ РТУТИ И ОЛОВА НА МОЛОДЬ ОСЕТРОВЫХ РЫБ

© 2005 г. Ю.Т. Пименов¹, Н.Т. Берберова¹, В.П. Осипова¹, М.Н. Коляда², Е.Р. Милаева³

В работе установлено токсическое действие соединений ртути и олова на развитие и рост молоди осетровых рыб. Отмечено возрастание скорости перекисного окисления липидов в печени осетровых рыб при добавлении в корма соединений ртути и олова, что подтверждает ранее полученные данные о вовлечении органических производных ртути и олова в окисительно-восстановительные и радикальные процессы с образованием реакционноспособных частиц. При этом природные и синтетические ингибиторы радикальных процессов (α-токоферол, 2,6-диалкилфенолы) могут использоваться в качестве детоксицирующих агентов как в модельных экспериментах in vitro, так и in vivo на уровне живого организма.

В настоящее время на Каспии сосредоточен практически весь мировой запас осетровых рыб, представляющих собой золотой фонд отечественной инофармации. Значение осетровых определяется в первую очередь их исключительной биологической ценностью – это реликтовые виды. Они также могут служить не только пищевым объектом, но и возможным источником высокоэффективных биологически активных веществ, обладающих антимутагенной активностью. Однако в последнее время растет угроза уничтожения популяций осетровых рыб Каспийского моря [1].

Важную роль в этом, помимо недостаточно хорошо регулируемого осетрового промысла и браконьерства, играет многофакторное антропогенное загрязнение Каспийского моря и входящих в него рек токсичными веществами. В Северном Каспии отмечено превышение норм предельно допустимых концентраций (ПДК) фенолов, железа, меди и ртути, причем содержание ртути превышает ПДК более чем в 10 раз [2].

Известно, что значительную часть тяжелых металлов представляют металлургические соединения [3], которые, как правило, более токсичны, чем сами металлы. Так, если ПДК по олому для воды и водных объектов, имеющих рыбохозяйственное значение, составляет 0,112 мг/л, то попадание в водоемы определенных оловоорганических соединений (ООС) (трибутил- и трифенилоловохлоридов) вообще недопустимо [4]. Однако эти соединения широко используются в качестве биоцидных добавок в необрасточные краски, фунгициды, инсектициды, пестициды [5, 6] и вследствие этого попадают в водоемы. Метильные производные олова и ртути могут достаточно легко образовываться в водной среде из неорганических производных в результате многочисленных реакций биохимического метаболизма [3].

Имеют в своем составе лиофильные органические группы, эти соединения легко проникают через биологические мембраны в клетки живых организмов и накапливаются преимущественно в тканях с высоким уровнем обменных процессов и повышенным содержанием липидов. Разрушение биоценоза водоема начинается с конца пищевой цепи, и рыбы страдают первыми. Мигрируя по трофической цепи, эти токсинанты могут представлять реальную угрозу для гидробионтов, для животных, питаяющихся рыбой, а, значит, и для человека [7].

В печени погибших в 2000 г. каспийских тюленей, кроме различных хлорорганических соединений были обнаружены оловоорганические соединения – бутил- и октилолово-, моно-, ди- и триалкилпроизводные в различных концентрациях [8]. Так, концентрация дибутилолова составляла от 2 до 11 нг/г сырого веса, а трибутилолова, самого токсичного ксенобиотика, поступающего в природные воды, – от 0,5 до 7 нг/г. Таким образом высокотоксичные ООС не толь-
ко присутствуют в каспийской воде, но и, передаваясь по трофической цепи, накапливаются в организмах водных животных.

Благодаря биоаккумуляции в органах и тканях, накапливаться и организмах, соединения ртути и олова вызывают опасные отдаленные биологические последствия: мутагенные, иммунотоксические [9], эмбриотоксические [10], гонадотоксические и тераотогенные [11, 12]. Несмотря на многочисленность исследований токсикологического действия металлорганических соединений ртути и олова на живые организмы [2, 13–15], механизм действия этих соединений на сублеточном и молекулярном уровнях до сих пор неизвестен. Согласно последним исследованиям, определенный вклад в токсичность соединений ртути и олова вносит развитие окислительного стресса [16–18]. Одна- ко молекулярные механизмы действия металлорганических соединений как экзогенных про- оксидантов до конца не ясны.

Ранее нам было показано, что металлорганиче- ские соединения ртути и олова вовлекаются в биологические окислительно-восстановительные процессы, связанные с образованием реакционнспособных частиц и вторичных продуктов распада, также проявляющих токсические эффекты [19]. Понимание механизма позволит по-новому решать проблему поиска агентов, снижающих токсический эффект соединений ртути и олова.

Цель настоящей работы состояла в изучении влияния соединений ртути и олова на рыбоводно-биологические показатели осетровой молоди, а также в разработке рекомендаций по целесо- направленному использованию антиоксидантов для уменьшения действия токсических соединений тяжелых металлов.

МАТЕРИАЛ И МЕТОДЫ

Опыты проводились в установках с замкнутым водоснабжением (УЗВ), в которых содержатся рыбы, биофильтры, насосы и системы трубок — флейт. В опытах использовали скобок русского осетра (Acipenser kufenskii Brandt) и годовиков бестера. Для кормления скобок использовали стартовый корм ОСТ-4, годовиков — продукционный корм ОТ-6. Гранулированные корма были приготовлены в специальных лабораториях согласно существующим рецептурам. Скобок сажали в аквариумы по 30 особей в каждый, годовиков — по 5 особей. Кормление проводили вручную, расчет нормы кормления рассчитывали исходя из массы тела и температуры воды. Гидрохимические показатели воды за период проведения эксперимента находились в норме, температура воды поддерживалась в интервале 23–25 °C.

Рыбоводно-биологические показатели рассчитывали по следующим формулам. Среднесуточную скорость роста скобок вычисляли по формуле сложных процентов [20]:

\[A = \left(\frac{m_1}{m_0} \right)^{\frac{1}{100}} - 1 \]

где \(m_0 \) и \(m_1 \) — масса рыбы в конце и начале опыта, \(t \) — продолжительность опыта, дни.

Абсолютный прирост:

\[P_m = m_t - m_0, \quad \text{где} \quad m_t \rightarrow \text{конечная масса молоди, г;} \]

\[m_0 \rightarrow \text{начальная масса молоди, г.} \]

Среднесуточный прирост:

\[P_{\text{ср сут}} = \frac{(m_t - m_0)}{t}, \text{г/сут; где} \quad t \rightarrow \text{период выращивания, сут.} \]

Определение скорости пероксидного окисле- ния липидов в гомогенатах печени проводили по стандартной методике [21] по накоплению малонового диальдегида (МДА), дающего окрашенный комплекс с тиobarбитуртовой кислотой (ТБК). Развитие окраски определяли спектрофотометрически при 532 нм.

Гомогенат печени получали следующим обра- зом: навеску печени 0,5 г гомогенизировали в 19,5 мл охлажденного до 0–4 °C 1,2% раствора КСИ, поместив стакан гомогенизатора в лед. Для определения скорости спонтанного (ферментативного) перекисного окисления липидов (СнПОЛ) в одну пробирку наливают 2,0 мл гомо- гената и 0,2 мл дистилированной воды, во вторую — 2,0 мл гомогената и по 0,1 мл 2,6 ММ раствора аскорбиновой кислоты и 4 * 10^-3 М раствора соли Мора для определения скорости неферментативного окисления жировой кислоты для осаждения белка. Через 10 минут после инкубации в водной бане при 37 °С в первые две пробирки добавляли 1,0 мл раствора ССлСоон и все пробы центри- фугировали в течение 10 минут при 3000 об/мин. Отбирали по 2 мл недостваточной жидкости и в каждую пробирку добавляли по 1,0 мл 0,8% раствора ТБК, помещая в кипящую водяную баню на 10 минут и после охлаждения до комнатной температуры измеряли поглоще- ние всех проб при 532 нм по отношению к контрольному раствору.

В опытах in vitro в 2,0 мл гомогената печени вносили спиртовые растворы токсинов в концентрациях 1 * 10^-3 М (не более 2% этанола от
объема среды) и затем проводили регистрацию ПОЛ в гомогенатах тканей печени по накоплению малонового диальдегида.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В последние годы обнаружены многочисленные нарушения в репродуктивной системе осетровых Волго-Каспийского бассейна, причем аномалии у них прослеживаются на всех уровнях: клеток, тканей, органов, организма и популяций [22]. В таких неблагоприятных условиях решение задачи поддержания и, тем более, увеличения запасов осетровых рыб, может быть связано с эффективным искусственным воспроизводством семейства осетровых рыб на рыбоводных заводах. Выращивание молоди осетровых рыб в искусственных условиях требует использования высококачественного сухого комбикорма. В составе стартовых рыбных комбикормов находится не менее 50% рыбной муки, а также 2-3% рыбьего жира. Учитывая тот факт, что рыбная мука готовится из рыб, выловленных в естественных водоемах, нельзя исключить возможность попадания токсичных соединений ртути и олова, относящихся к суперртуксикантам, в организмы гидробионтов, а затем и в искусственный комбикорм, приготовленный на их основе.

Для определения токсичности соединений ртути и олова были проведены эксперименты по выращиванию молоди осетровых рыб при добавлении в корм токсикантов. Для изученных соединений были определены действующие концентрации, при которых не наблюдается резкого снижения выживаемости осетровой молоди, но отчетливо прослеживается уменьшение массы тела.

Известно, что для живых организмов самой высокой токсичностью из органических производных ртути обладает метилртут [23]. В работе проведено исследование влияния иодида метилртути на рыбоводно-биологические показатели выращивания молоди русского осетра. Действующая концентрация CH₃HgI составила 15 мг/кг корма (табл. 1).

Для сравнения токсичности органического производного ртути и неорганической соли было рассмотрено влияние добавок сулемы (табл. 1). Показатели токсического действия сулемы и иода метилртути в наших исследованиях оказываются сопоставимыми (см. табл. 1). Это может быть связано с высокой скоростью метилирования ионов ртути различными метилирующими агентами непосредственно в организме осетра.

Поскольку известно, что неорганические соединения олова не обладают высокой токсичностью, но при попадании в водную среду могут достаточно легко образовывать органические производные в результате биохимического метилирования, в данной работе было рассмотрено

Таблица 1. Рыбоводно-биологические показатели выращивания молоди осетра при добавлении в корм токсикантов
(период выращивания – 30 суток)

<table>
<thead>
<tr>
<th>Вариант рецептур</th>
<th>Показатели</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>контроль</td>
<td>26,3±0,14</td>
<td>46,0±0,15</td>
<td>19,7</td>
<td>100</td>
</tr>
<tr>
<td>метилртуть 10мг/кг корма</td>
<td>25,3±0,12</td>
<td>28,5±0,13</td>
<td>3,2</td>
<td>80</td>
</tr>
<tr>
<td>метилртуть 15мг/кг корма</td>
<td>27,4±0,12</td>
<td>26,8±0,11</td>
<td>-0,63</td>
<td>90</td>
</tr>
<tr>
<td>метилртуть 30мг/кг корма</td>
<td>26,8±0,11</td>
<td>24,7±0,12</td>
<td>-2,0</td>
<td>50</td>
</tr>
<tr>
<td>контроль сулема 15мг/кг корма</td>
<td>1,9±0,09</td>
<td>5,4±0,2</td>
<td>3,62</td>
<td>80</td>
</tr>
<tr>
<td>метилртуть 15мг/кг корма</td>
<td>2,3±0,14</td>
<td>2,12±0,16</td>
<td>-0,26</td>
<td>40</td>
</tr>
<tr>
<td>TMOX, 50мг/кг корма</td>
<td>2,2±0,12</td>
<td>2,01±0,17</td>
<td>-0,21</td>
<td>50</td>
</tr>
<tr>
<td>TMOX, 100мг/кг корма</td>
<td>58</td>
<td>62</td>
<td>+4</td>
<td>—</td>
</tr>
<tr>
<td>TMOX, 150мг/кг корма</td>
<td>48</td>
<td>52</td>
<td>+4</td>
<td>—</td>
</tr>
<tr>
<td>TMOX, 200мг/кг корма</td>
<td>70</td>
<td>66</td>
<td>-4</td>
<td>—</td>
</tr>
<tr>
<td>TMOX, 250мг/кг корма</td>
<td>56</td>
<td>52</td>
<td>-4</td>
<td>—</td>
</tr>
<tr>
<td>TMOX, 300мг/кг корма</td>
<td>74</td>
<td>70</td>
<td>-4</td>
<td>—</td>
</tr>
<tr>
<td>ВЕСТНИК ЮЖНОГО НАУЧНОГО ЦЕНТРА РАН</td>
<td>т. 1</td>
<td>№ 1</td>
<td>2005</td>
<td>3*</td>
</tr>
</tbody>
</table>
Таблица 2. Рыбоводно-биологические показатели выращивания молоди бестера при использовании различных комбикормов (период выращивания – 20 суток)

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Нормальная мука</th>
<th>Просоченная мука</th>
<th>Просоч. мука с α-ТКФ (150 мг/кг)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Начальная масса тела, г</td>
<td>42,2±6,46</td>
<td>42,2±6,31</td>
<td>42,2±6,22</td>
</tr>
<tr>
<td>Конечная масса тела, г</td>
<td>58,3±3,31</td>
<td>47,0±4,18</td>
<td>56,2±3,96</td>
</tr>
<tr>
<td>Прирост, г</td>
<td>16,1</td>
<td>4,8</td>
<td>14,0</td>
</tr>
<tr>
<td>Выживаемость, %</td>
<td>100</td>
<td>91</td>
<td>99</td>
</tr>
</tbody>
</table>

Таблица 3. Рыбоводно-биологические показатели выращивания молоди русского осетра с использованием опытных соединений в составе комбикорма

<table>
<thead>
<tr>
<th>Вариант рецептур</th>
<th>начальная масса тела, г</th>
<th>конечная масса тела, г</th>
<th>средний индивидуальный прирост, г</th>
<th>период выращивания, сут.</th>
<th>выживаемость, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>контроль</td>
<td>24,27±1,1</td>
<td>32,95±1,5</td>
<td>8,68</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>метилтритофан</td>
<td>20,61±1,2</td>
<td>18,95±3,0</td>
<td>-1,66</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>α-ТКФ</td>
<td>22,3±1,2</td>
<td>54,45±1,4</td>
<td>32,15</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>метилтритофан+</td>
<td>27,2±1,1</td>
<td>33,6±2,5</td>
<td>6,4</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>α-ТКФ</td>
<td>2,5±0,12</td>
<td>5,12±0,19</td>
<td>3,62</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>сулема</td>
<td>2,38±0,12</td>
<td>2,21±0,25</td>
<td>-0,15</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>α-ТКФ +сулема</td>
<td>2,5±0,11</td>
<td>9,1±0,19</td>
<td>6,62</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>α-ТКФ +дибензо-деканол</td>
<td>2,8±0,11</td>
<td>6,02±0,2</td>
<td>3,22</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>α-ТКФ +дibenzo-деканол +сулема</td>
<td>2,92±0,12</td>
<td>10,3±0,18</td>
<td>7,38</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>α-ТКФ +дibenzo-деканол +сулема</td>
<td>2,38±0,11</td>
<td>6,81±0,18</td>
<td>4,43</td>
<td>30</td>
<td>80</td>
</tr>
</tbody>
</table>

Влияние наиболее токсичного в этом ряду trimetiliproizvodnogo – trimetiloloxidhlorida (TMOX). Было изучено действие различных концентраций этого токсинка при добавлении в корм на рост молоди русского осетра (табл. 1). Согласно полученным результатам, рост молоди прекращался при добавлении TMOX в корм в концентрации 150 мг/кг, которая и была выбрана в качестве рабочей.

Рыбы, получавшие корм с добавками ООС, были менее подвижны, пассивны. Отмечались случаи потери равновесия и нарушения координации движений, что свидетельствует о возможных патологических сдвигах в центральной нервной системе. Однако снижение интенсивности питания ожидается не было: молодь русского осетра поедала отравленный корм почти так же активно, как осетры из контрольной группы поедали частый. Таким образом, определение действующих концентраций для соединений ртути и олова показало большую токсичность ртути и селена.

Разработка новых концепций молекулярных механизмов токсичности металлоорганических соединений является основой для поиска эффективных детоксицирующих агентов, обеспечивающих снижение экотоксикологического стресса, вызванного данными металлоорганическими соединениями. Согласно обобщённой концепции механизма токсичности определяющую роль в реакционной способности органических соединений ртути и олова играет атом металла [24].

В настоящее время основными средствами, использующимися при отравлениях соединениями Hg и Sn, являются тиопроизводные и комплексные. Их действие основано на связывании атомов Hg и Sn в комплексы с образованием связей M-S, M-O, M-N [24, 25]. Однако такой механизм не предусматривает возможности дезактивации реакционноспособных органических радикалов R, возникающих при гомолитическом разрыве связей M-C в результате биохимических окислительно-восстановительных и радикальных про-
цессов с участием R₂MX₄. Следует, видимо, рассмотривать защитное действие природных ингибиторов радикальных процессов, например, витаминов группы Е, а также их синтетических аналогов, по отношению к действию металлорганических соединений.

Для снижения токсического действия соединений ртути и олова было рассмотрено влияние добавок различных антиоксидантов в корм рыбы. Проведение опытов показало, что α-токоферол (ТКФ) является эффективным антиоксидантом, т.к. добавление α-токоферола даже в просроченную мукку с высоким начальным содержанием гидроперекисей повышает массу бестера и его выживаемость, а также образованные рыбами мукку по своему действию становится сопоставимой с нормальной рыбной мукой (табл. 2).

Проведение экспериментов с одновременным введением ртути токсикантов и антиоксидантов (табл. 3) показало, что антиоксиданты (α-токоферол чистый и в сочетании с 16-окса-2-тиогетероцикло-дибензоканолом) не только уменьшают негативное влияние соединений ртути, но и позволяют достичь в дальнейшем положительных результатов при выращивании осетровых рыб.

Введение совместно с α-токоферолом 16-окса-2-тиогетероцикло-дибензоканола, способного связывать атомы ртути, кислорода и серы в комплексе, оказывает незначительное положительное влияние.

Аналогичные опыты были проведены с молодью бестера (табл. 4). Добавка токоферола в корм снижала токсическое действие и оловоорганических соединений. Молодь осетров из группы, получавшей корм с добавками (CH₃)₂SnCl и α-токоферола за первые 15 дней показала незначительную прибавку в весе - 4,5 г и по поведению почти не отличалась от рыб из первой опытной группы. После увеличения дозы витамина Е активность осетров повысилась и стала сопоставимой с активностью контрольных рыб. Молодь стала лучше поедать корм, среднесуточный прирост увеличился до 0,5 г, и в конце опыта прибавка в весе составила 20,3 г (табл. 4).

Таким образом, можно высказать обоснованное предположение, что в механизме токсичности ртути и оловоорганических соединений достаточно велик вклад радикальных цепных реакций, с которыми можно эффективно бороться с помощью антиоксидантов. Учитывая высокое средство органических групп в соединениях ртути и олова к липидам - основным компонентам биологических мембран, можно предположить, что токсическое действие металлорганических соединений в первую очередь может быть связано с их влиянием на эти легко окисляющиеся соединения. Установлено, что в механизм окислительного стресса большое значение имеют процессы перекисного окисления липидов [26].

Активация ПОЛ, как считает ряд исследователей, играет значительную роль в токсическом повреждении биомембран, что может привести к различным патологиям [27].

У рыб перекисное окисление липидов является активным метаболическим и регуляторным

<table>
<thead>
<tr>
<th>Вариант рецептуры</th>
<th>Показатели</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>начало массы</td>
</tr>
<tr>
<td></td>
<td>тела, г</td>
</tr>
<tr>
<td>годовики бестера</td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>218,1±13,4</td>
</tr>
<tr>
<td>α-ТАКФ</td>
<td>200,8±12,1</td>
</tr>
<tr>
<td>α-ТКФ сулема</td>
<td>238,4±15,6</td>
</tr>
<tr>
<td>α-ТКФ, метилрутуть</td>
<td>249,2±14,8</td>
</tr>
<tr>
<td>сулема</td>
<td>216,4±18,1</td>
</tr>
<tr>
<td>метилрутуть</td>
<td>205,8±10,7</td>
</tr>
<tr>
<td>русский осетр</td>
<td></td>
</tr>
<tr>
<td>контроль (CH₃)₂SnCl (150 мг/кг корма)</td>
<td>52,8±8,2</td>
</tr>
<tr>
<td>(CH₃)₂SnCl + α-ТКФ</td>
<td>57,4±7,4</td>
</tr>
<tr>
<td></td>
<td>56,5±11,0</td>
</tr>
</tbody>
</table>

ВЕСТНИК ЮЖНОГО НАУЧНОГО ЦЕНТРА РАН т. 1 № 1 2005
Таблица 5. Влияние ртутных солей на показатели ПОЛ печени русского осетра *in vitro*

<table>
<thead>
<tr>
<th>№ п.п</th>
<th>МДА, моль</th>
<th>HgCl₂</th>
<th>CH₃HgI</th>
<th>α-ТКФ, мг/100 г</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,38±0,16</td>
<td>7,04±0,12</td>
<td>6,89±0,14</td>
<td>2,5</td>
</tr>
<tr>
<td>2</td>
<td>3,73±0,29</td>
<td>3,71±0,21</td>
<td>3,49±0,38</td>
<td>2,7</td>
</tr>
<tr>
<td>3</td>
<td>12,89±0,33</td>
<td>13,03±0,14</td>
<td>12,64±0,11</td>
<td>6,1</td>
</tr>
<tr>
<td>4</td>
<td>15,6±0,03</td>
<td>15,57±0,01</td>
<td>15,54±0,02</td>
<td>3,1</td>
</tr>
<tr>
<td>5</td>
<td>28,9±0,32</td>
<td>26,37±0,06</td>
<td>24,9±0,1</td>
<td>1,5</td>
</tr>
<tr>
<td>6</td>
<td>23,8±0,07</td>
<td>22,65±0,1</td>
<td>23,3±0,25</td>
<td>8,3</td>
</tr>
</tbody>
</table>

фактором. Несмотря на значительное количество данных о перекисных процессах у рыб, остаётся неизвестным механизм влияния большинства факторов водной среды на уровень и динамику ПОЛ у рыб [28].

Влияние органических производных ртути и олова на процессы в липидном слое непосредственно связано с тем, что их токсическое действие рассматривается, как правило, в аэробных условиях, т. е. в среде, насыщенной кислородом, способным в физиологических условиях образовывать активные кислородные метаболиты (АКМ) H₂O₂, НО·, О₂⁻, которые наряду с генерируемыми металлоорганическими соединениями радикалами могут вызывать деструкцию липидов, повреждать белки, ДНК [29]. Повышение концентрации активных частиц может быть одной из причин развития окислительного стресса при действии токсинентов на живые объекты, биохимическим маркером которого является перекисное окисление липидов (ПОЛ).

В данной работе рассмотрено действие соединений ртути, олова и антиоксидантов на перекисное окисление липидов печени осетровых рыб при различных способах их попадания в печень: *in vivo* и *in vitro*, т. к. известно, что тяжёлые металлы, попадая в живой организм, аккумулируются преимущественно в печени. Известно также, что в печени рыб присутствует определённое количество эндогенного α-токоферола, который влияет на интенсивность перекисных окислительных процессов [30, 31]. Причем, как известно, рыбам присущ относительно высокий уровень антиоксидантной защиты даже в сравнении с таким эндотермическим животными, как птицы и млекопитающие [32].

Полученные в ходе опытов результаты показывают, что в образцах печени, в которых обнаружено высокое содержание эндогенного α-токоферола, добавки ртутных солей не оказывают заметного действия на накопление МДА (табл. 5). Из полученных данных следует, что показатели ПОЛ в рыбах, подвергшихся воздействию токсинентов, больше по сравнению с контролем в 2-4 раза, причем с увеличением концентрации токсинента наблюдается значительное увеличение ПОЛ в печени осетровых. Эти результаты подтверждают промотирующее влияние ртутных солей на протекающее в живом организме перекисное окисление липидов. Из данных таблицы 6 видно, что в отсутствие антиоксидантов наблюдается существенное промотирование ПОЛ соединениями ртути, т. к. при введении HgCl₂ и CH₃HgI в корм рыб уровень ПОЛ возрастает соответственно в 2-5 и 3-7 раз, при добавлении чистого α-токоферола уровень ПОЛ падает на 50%, а при введении токсинентов в корм рыбам, ранее получавшим α-токоферол, уровень ПОЛ сопоставим с контрольным опытом.

При изучении скорости ПОЛ в печени осетровых рыб под действием добавок ООС обнаружено, что под действием дитиобутиловодихлорида (ДББОДХ) ПОЛ в печени осетра усиливается в пять раз, под действием ТМХ – в три раза по сравнению с контролем. Полученные нами данные не противоречат литературным, согласно которым поражение печени при действии бутильного триацилглицеридного обусловлено образующимся при дезактивации дитиобутиловодихлоридом [33].

Определение скорости перекисного окисления липидов в присутствии соединений олова и ртути показало, что наибольшим промотирующим эффектом обладает металлическое производное ртути. Увеличение уровня МДА может быть следствием нарушений в ферментативных механизмах антиоксидантной защиты [34]. Кроме того, окислительный стресс может быть вызван генерированием активных органических радикалов, происходящих при метаболизме соединений тяжёлых металлов [35]. Таким образом, деток-
Таблица 6. Влияние ртутьных соединений и α-токоферола на показатели ПОЛ в печени бестера in vivo, где СнПОЛ — спонтанное (ферментативное) ПОЛ, АсПОЛ — аскорбатзависимое (неферментативное) ПОЛ, определяемые как скорость вакопления малового диаллилглукола (MDA), моль/час

<table>
<thead>
<tr>
<th>Варианты ртутных</th>
<th>Сн ПОЛ</th>
<th>Ас ПОЛ</th>
<th>MDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Стандартный корм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>корм с добавками CH₃HgCl (10 мг на 1 кг корма)</td>
<td>10,87</td>
<td>15,00</td>
<td>2,98</td>
</tr>
<tr>
<td>корм с добавками CH₃HgCl (15 мг на 1 кг корма)</td>
<td>19,03</td>
<td>36,30</td>
<td>3,74</td>
</tr>
<tr>
<td>корм с добавками CH₃HgCl (30 мг на 1 кг корма)</td>
<td>26,06</td>
<td>87,63</td>
<td>5,44</td>
</tr>
<tr>
<td>Стандартный корм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>корм с добавками HgCl₂ (4 мг на 1 кг корма)</td>
<td>9,63±1,58</td>
<td>10,12±1,84</td>
<td>1,23±0,04</td>
</tr>
<tr>
<td>корм с добавками CH₃HgCl (4 мг на 1 кг корма)</td>
<td>16,27±2,96</td>
<td>57,06±15,4</td>
<td>4,18±0,04</td>
</tr>
<tr>
<td>корм с добавками α-ТКФ (10 мг на 1 кг корма) и HgCl₂ (4 мг на 1 кг корма)</td>
<td>18,69±3,14</td>
<td>72,76±17,2</td>
<td>5,21±0,43</td>
</tr>
<tr>
<td>Корм с добавками α-ТКФ (10 мг на 1 кг корма) и CH₃HgCl (4 мг на 1 кг корма)</td>
<td>4,08±0,4</td>
<td>5,49±0,47</td>
<td>0,86±0,02</td>
</tr>
<tr>
<td>Корм с добавками α-ТКФ (10 мг на 1 кг корма) и CH₃HgCl (4 мг на 1 кг корма)</td>
<td>8,12±1,96</td>
<td>10,01±2,01</td>
<td>1,08±0,38</td>
</tr>
</tbody>
</table>

Вестник Южного научного центра РАН, т. 1 № 1 2005

Список литературы

2. Физиолого-биохимический статус для снижения костно-мышечных расстройств и овощей вносит прямое влияние на окислительного стресса.
3. Анализ литературных и полученных данных показывает, что для снижения токсического действия соединений ртути и овощей можно использовать природные и синтетические антиоксиданты (α-токоферол и ряд производных 2,6-диачилдифенилов) путем введении их в рацион питания волокон животных и в корма рыб.
4. В данной работе показано, что токсическое действие ртуть- и овощеорганических соединений наносят на молодь осетровых пород рыб обусловлено не только координационную металла с белковыми молекулами, но и повреждениям мембран активными цепями, обладающими при гомоолитическом распаде, связанный углерод-металл. В связи с этим применение в качестве антиоксидантного, а также комбинация, связывающих атом металла, является менее эффективным, чем использование природных и синтетических антиоксидантов — ингибиторов радикальных процессов.
5. Работа выполнена при поддержке программы ОПН РАН "Фундаментальные основы управления биологическими ресурсами" по теме 00-04-21 "Исследование влияния соединений ртути и овощей на рыбоводно-биохимические и биохимические показатели молодь русского осетра и повышение резистентности осетровых при поджильных формах" и РФФИ (грант 05-03-96504).
TOXIC ACTION OF MERCURY AND TIN COMPOUNDS ON YOUNGER STURGEON FISH

Yu.T. Pimenov, N.T. Berberova, V.P. Osipova, M.N. Kolyada
E.R. Milaeva

In work the toxic effect of mercury and tin compounds on young sturgeon fish development and growing is established. The increasing of speed of lipid peroxide oxidation in a sturgeon fish liver is marked when adding mercury and tin compounds into forages what confirms earlier obtained data about mercury and tin organic derivants involving into redox and radical processes with reactive particles formation. Thus native and synthetic inhibitors of radical processes (α-tocopherol, 2,6-diarylphenoins) can be used as detoxifying agents in modeling experiments in vitro as well as in vivo at a living organism level.
REFERENCES

4. Perechen' rybokhrazaystvennykh normativov predel'no dopustimykh kontsentratii (PDK) i orientirovocchno bezopasnych urovnei vozdeystviya (OBUV) vrednykh veshestv ob"ektov, imeyushchikh rybokhrazaystvennoe znachenie. [Enumeration of the fishery norms of the maximum permissible concentrations (PDK) and the tentatively safe levels of action (AFTER PUTTING ON SHOES) harmful substances for the water of the aqueous objects, which have the fishery value]. 1999. M., VNIRO Publishers: 211 p. (In Russian).

