СОДЕРЖАНИЕ ПРОИЗВОДНЫХ ОКСИДА АЗОТА В ПЛАЗМЕ КРОВИ ОНКОЛОГИЧЕСКИХ БОЛЬНЫХ С МЕТАСТАТИЧЕСКИМ ПОРАЖЕНИЕМ ГОЛОВНОГО МОЗГА

© 2005 г. академик РАМН Ю.С. Сидоренко1,2, К.Г. Айрапетов1,2, И.А. Горошинская2

Медицина

УДК 616-06:616.81-006.04

В плазме крови онкологических больных с метастатическим поражением головного мозга исследовали содержание пероксинитрита, нитрозогемоглобина, нитрозоглутатиона и нитротиризина. На основании данных биохимических исследований показано, что существует зависимость величины исследованных показателей от общеметаболического состояния больных, состояния перивичного опухолевого процесса и распространенности метастатического поражения головного мозга.

Метастатическое поражение головного мозга, как финальная стадия развития общего опухолевого процесса, возникает у 25-30% всех онкологических больных [1] и всегда ассоциируется с плохим прогнозом течения онкологического заболевания. Наличие клинически манифестированных церебральных метастазов значительно ухудшает прогноз основного заболевания, даже несмотря на проводимое лечение; при этом 50% больных погибают от прогрессирования первичного опухолевого процесса, другие 50% – от осложнений, связанных с прогрессированием церебральной метастатической болезни [2, 3]. В связи с этим большое значение имеют адекватное прогнозирование, максимально раннее диагностика и лечение метастазов в головной мозг.

Биохимическое прогнозирование при метастатическом поражении головного мозга, в частности, исследование и мониторинг некоторых сывороточных маркеров, показало свою существенную прогностическую значимость. Выявлены прогностическая ценность сывороточной лактатдегидрогеназы, карциногембрионального антигена (прогноз выживаемости больных), нейрон-инсулиноподобной энолазы, протеина S-100-бета (прогноз возникновения метастатических церебральных очагов) [4, 5, 6].

Работы последних лет показывают, что ключевыми факторами в патогенезе опухолей головного мозга являются свободные радикалы, в частности, оксид азота NO и его производные [7, 8]. В многочисленных исследованиях, проведенных на клетках глиомы и астроцитомы, продемонстрировано усиление синтеза оксида азота и изучено влияние цитокинов, пролактина, а также разных фармакологических препаратов на его продукцию [9, 10, 11]. Выявлена взаимосвязь между оксидом азота и фактором роста эндотелия сосудов с антигеном и ростом глиомы [12]. Показана роль оксида азота в промоции канцерогенеза, процессах апоптоза и зависимость его уровня от эффективности лечения [13, 14, 15].

Учитывая значенье мембранный свободнорадикальный перекисного окисления липидов, играющих важную роль в многостадийных процессах канцерогенеза, нам представлялось важным оценить интенсивность хемилиминесценции (ХЛ), позволяющую судить об уровне свободных радикалов кислорода и уровни производных NO.

Об активности свободнорадикальных процессов в плазме крови судили по интенсивности
H_2O_2 – луминолзависимой хемилиминесценции, зависящей от уровня супероксидного (O$_2^-$) и гидроксилного (OH-) радикалов, и уровню пероксинитрита (ONOO$^-$) и производных NO: нитрозогемоглобина, нитрозоглутатиона и нитротиризина.

В плазме крови пациентов отделения нейрохирургии Ростовского научно-исследовательского онкологического института (РНИОИ) определяли светосумму хемилиминесценции в системе перекиси водорода/луминол по методу В.А. Шестакова [16], выражая ее в количестве импульсов за 6 секунд. Уровень в плазме крови пероксинитрита (ONOO$^-$) и производных NO (нитрозогемоглобина, нитрозоглутатиона и нитротиризина) определяли спектрофлюорометрически на спектрофлюоримetre "Флюорэт-02-пани" при следующих длинах волн: перокси-
Таблица 1. Показатели свободнорадикальных процессов у больных с различным общесятическим состоянием (удовлетворительным – группа I, средней тяжести – группа II, тяжелым – группа III)

<table>
<thead>
<tr>
<th>Группы</th>
<th>Светосумма ХГЛ, имп./сек.</th>
<th>Пероксинитрит, нм/мг белка</th>
<th>NO-гемоглобин</th>
<th>NO-глутатион, нм/мг белка</th>
<th>NO-тирозин, нм/мг белка</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>n = 15</td>
<td>3310±219</td>
<td>85,5±5,31</td>
<td>9,43±0,57</td>
<td>21,93±0,97</td>
</tr>
<tr>
<td>Группа I</td>
<td>n = 11</td>
<td>2211±299</td>
<td>153±20,9</td>
<td>11,4±1,82</td>
<td>32,7±6,97</td>
</tr>
<tr>
<td>Группа II</td>
<td>n = 7</td>
<td>2965±530</td>
<td>169±23,6</td>
<td>12,9±2,69</td>
<td>31,0±4,73</td>
</tr>
<tr>
<td>Группа III</td>
<td>n = 7</td>
<td>2868±639</td>
<td>233±51,5</td>
<td>13,1±2,96</td>
<td>34,0±5,08</td>
</tr>
</tbody>
</table>

Примечание. Указаны значения р для достоверных изменений и тенденций к достоверности (0,05 < р < 0,1). р – достоверность относительно контроля. p1, 2, p1, 3, p2, 3 – достоверность между группами.

нитрит – 302 нм, нитрогемоглобин – 2 пика при 418 нм и 545 нм, нитроглутатион – 338 нм, нитроглутатион – 438 нм. Уровень продуктов NO рассчитывали с использованием выведенных молярных коэффициентов экстинкции [17, 18] и выражали количество пероксинитрита, нитроглутатион и нитроглутатион в имолях на мг белка, а количество нитрогемоглобина при 418 нм в ед. на мг гемоглобина, при 545 нм – в имолях на мг гемоглобина.

Исследовали кровь онкологических больных с метастазами в головной мозг. Больные были разделены на несколько групп. В зависимости от общесятического состояния при первичном осмотре были выделены три группы: первая – 11 больных в удовлетворительном состоянии; вторая – 7 больных в состоянии средней тяжести; третья – 7 больных в тяжелом состоянии.

Анализ результатов исследования содержания пероксинитрита и нитрозообразований в плазме крови показал их зависимость от общесятического состояния больных (табл. 1). В первой группе (больные с удовлетворительным состоянием) наблюдалось увеличение содержания пероксинитрита на 78,9% по сравнению с уровнем у здоровых людей (р < 0,01). У больных в состоянии средней тяжести уровень пероксинитрита повышался на 97,6% (р < 0,01), имела место тенденция к увеличению содержания нитрогемоглобина на 41,4% (0,05 < р < 0,1), определяемого при длине волны 545 нм, и достоверное увеличение содержания нитроглутатиона на 25,1% (р < 0,01). В группе больных с тяжелым общесятическим состоянием, помимо максимального увеличения содержания пероксинитрита (на 172,5%, р < 0,01), наблюдалась и прирост нитрогемоглобина (545 нм) на 55% (р < 0,05).

Интенсивность ХГЛ плазмы крови у больных с удовлетворительным общесятическим состоянием достоверно снижалась на 33,2% по сравнению с уровнем у группы людей без онкологической (р < 0,01). У более тяжелых больных средние значения ХГЛ были выше, чем у больных первой группы, но отличались незначительно от среднего значения в группе людей без онкологической. При этом у половины больных, вовлеченных во вторую и третью группы, данный показатель был в среднем вдвое ниже нормы, а у остальных превышал уровень у группы здоровых людей на 85,3% у больных средней тяжести и на 108,5% – у тяжелых больных.

При анализе результатов исследования биохимических показателей в группах больных с раз-
<table>
<thead>
<tr>
<th>Группы</th>
<th>Светосумма, нм.чл./6 сек.</th>
<th>Пероксициртит, Нм/мг белка</th>
<th>NO-гемоглобин, (\lambda = 418 \text{ нм, Ед./мг гем.})</th>
<th>NO-глутатион, Нм/мг белка</th>
<th>NO-тирозин, Нм/мг белка</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль n = 15</td>
<td>3310±219</td>
<td>85,51±5,31</td>
<td>9,43±0,57</td>
<td>21,93±0,97</td>
<td>27,8±2,1</td>
</tr>
<tr>
<td>1 группа n = 8</td>
<td>2439±510</td>
<td>135,35±28,67</td>
<td>9,97±1,82</td>
<td>31,4±7,7</td>
<td>31,6±2,4</td>
</tr>
<tr>
<td>2 группа n = 11</td>
<td>2472±326</td>
<td>161,43±25,92</td>
<td>12,5±2,1</td>
<td>30,42±3,82</td>
<td>34,5±3,2</td>
</tr>
<tr>
<td>3 группа n = 5</td>
<td>5212±2039</td>
<td>236,0±60,17</td>
<td>16,18±3,75</td>
<td>41,54±10,3</td>
<td>43,2±13,6</td>
</tr>
</tbody>
</table>

Приложение. Указаны значения p для достоверных изменений и тенденций к достоверности (0,05 < p < 0,1), p – достоверность относительно контроля. p1, 2, p1, 3, p2, 3 – достоверность между группами.

личным состоянием первичного опухолевого процесса было выявлено увеличение всех исследованных показателей свободнодиффундирующего окисла у больных с прогрессирующим первичным процессом (табл. 2). Статистически достоверным было увеличение содержания пероксициртита на 176% (р < 0,001) и обоих пиков нитрозогемоглобина на 71,6% и 89,4% (р < 0,01, р < 0,05). Содержание нитрозоглутатиона имело тенденцию к повышению (0,05 < р < 0,1). Интенсивность ХЛ была резко увеличилась в среднем в три раза у половины больных, а у остальных – снижена вдвое по сравнению с контрольной группой. У больных со стабилизацией первично-го опухолевого процесса достоверное увеличение наблюдалось лишь для пероксициртита (на 88,8%) и нитрозогемоглобина (545 нм) (на 38,7%). Интенсивность ХЛ у больных со стабилизацией была достоверно сниженной на 25,3% по сравнению с контрольной группой (р < 0,05) и проявляла тенденцию к снижению по сравнению с группой больных с прогрессированием первичного процесса (0,05 < р < 0,1). У больных, находящихся в состоянии ремиссии первичного опухолевого процесса, увеличение содержания пероксициртина было минимальным – на 58,3% выше значений контрольной группы (р < 0,05), содержание нитритов и светосумма ХЛ проявили тенденцию к снижению (на 30% и 26% относительно контроля соответственно), а уровень остальных производных оксидов азота не претерпевал достоверных изменений.

Анализ биохимических показателей, в зависимости от наличия у больных одиночных или множественных церебральных метастазов, выявил следующие особенности.

Уровень свободнодиффундирующих процессов у больных с множественными метастазами был существенно, для части показателей статистически достоверно, выше по сравнению с уровнем у больных с одиночными метастазами (табл. 3). В группе больных с множественными метастазами наблюдалось значительное увеличение интенсивности ХЛ: на 38% по сравнению с контрольной группой и на 97% по сравнению с группой больных с одиночными метастазами, что оказалось достоверно (р < 0,05). Содержание пероксициртита у больных с множественными метастазами было достоверно выше уровня у людей без онкологической на 124,2%, а у больных с одиночными метастазами – на 98%. Содержание нитрозогемоглобина (545 нм) у больных с множественными метастазами достоверно на 68,5% превышало контроль, а у больных с одиночными метастазами проявлял лишь тенденцию к увеличению за счет значительных колебаний данного показателя в этой группе. Увеличение уровня нитрозоглутатиона имело место только у больных с множественными метастазами, у которых он был достоверно выше контрольного уровня на 60,8% (р < 0,01) и уровня у больных с одиночными метастазами на 50% (р < 0,05). Содержание нитритов у больных с множественными метастазами проявляло тенденцию к повышению на 53,5% по сравнению с больными первой группы (0,05 < р < 0,1).

Таким образом, представленные в данном исследовании результаты свидетельствуют о зависимости изученных показателей от тяжести общесоматического состояния больных, от состояния первичного опухолевого процесса и от распространённости поражения головного мозга. Для многих больных с тяжёлым общесоматиче-
Таблица 3. Показатели свободнорадикальных процессов у больных с одиночными (группа I) и множественными (группа II) метастазами

<table>
<thead>
<tr>
<th>Группы</th>
<th>Светосумма XІ. имп./6 сек.</th>
<th>Пероксинитрит, nМ/мг белка</th>
<th>NO-гемоглобин</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>λ = 418 нм, Ед./мг гем.</td>
<td>λ = 545 нм, Ед./мг гем.</td>
</tr>
<tr>
<td>Доноры</td>
<td>n = 15</td>
<td>3310±219</td>
<td>85,51±5,31</td>
</tr>
<tr>
<td>Группа I</td>
<td>n = 15</td>
<td>2347±345</td>
<td>169,3±27,74</td>
</tr>
<tr>
<td>Группа II</td>
<td>n = 9</td>
<td>4624±977</td>
<td>191,7±24,83</td>
</tr>
</tbody>
</table>

Примечание. Указаны значения p для достоверных изменений и тенденций к достоверности (0,05 < p < 0,1), p — достоверность относительно контроля, p1 — достоверность между группами.

ским состоянием характерно увеличение интенсивности образования свободных радикалов, в частности, пероксинитрита. Наиболее высокий его уровень — почти трехкратное превышение по сравнению со значениями в группе людей без онкологической — выявлен нами у больных с прогрессирующим первичным процессом и у наиболее тяжелых больных при их разделении по общесоматическому состоянию. При прогрессировании первичного опухолевого процесса и развитии метастазов происходило также увеличение уровня нитрозопроявляемого NO-гемоглобина, NO-глютатиона, NO-тирозина.

Эти явления связаны с тем, что по мере развития опухолевого процесса происходит повышение активности фермента NO-синтазы, генерирующего оксид азота в свободнорадикальной форме [19, 20]. Высокая скорость реакции свободного NO с супероксидным радикалом приводит к тому, что в клетках и тканях значительная часть NO превращается в чрезвычайно токсичное соединение — пероксинитрит ONOO-, который вносит свой вклад в развитие реакций свободнорадикального окисления, является сильным ДНК-расщепляющим агентом и тем самым может рассматриваться как один из важнейших факторов канцерогенеза [7]. При этом в организме существуют механизмы стабилизации и защиты NO через включение в состав соединений, осуществляющих его транспорт и распределение в тканях (дитионитропы, комплекс железо с тиоловыми лигандами (цистенин, глутатион), S-нитрозоцистиол) [21, 22].

В целом высокий уровень NO в первичных опухолях способствует ее прогрессии и метастазированию [23]. Повышение уровня NO в организме может приводить к удалению избытка свободного NO за счет реакций нитрозирования низкомолекулярных тиолов, SH-групп белков, ферроформ гемоглобина и созданию физиологически активного депо NO в тканях, которое по механизму обратной связи может ингибировать NO-синтазу, ограничивая продукцию NO [21].

ЛИТЕРАТУРА

CONCENTRATION OF NITROGEN OXIDE DERIVATIVES IN BLOOD PLASMA OF ONCOLOGIC PATIENTS WITH METASTATIC AFFECTION OF BRAIN

Yu.S. Sidorenko, K.G. Airapetov, I.A. Goroshinskaya

We studied concentration of peroxinitrite, nitrosohaemoglobin, nitrosoglutation and nitrotyrosine in plasma of blood of cancer patients with metastatic affection of the brain. The results of biochemical studies showed dependence of the values of the studied parameters on general somatic status of the patients, the state of primary tumour process and extension of metastatic affection of the brain.
REFERENCES