ТРАНСЛОКАЦИЯ ЦИНКА И СВИНЦА НА ТЕХНОГЕННО-ЗАГРЯЗНЕННОЙ ПОЧВЕ

© 2006 г. Т.М. Минкина

По результатам полевого опыта установлены различия в распределении цинка и свинца по органам ярового ячменя, выращенного на незагрязненном и загрязненном черноземе обыкновенном. Показано, что основную барьерную функцию по инактивации исследуемых тяжелых металлов выполняют корни растений. Устойчивость ячменя к загрязнению почв цинком выше, чем свинцом. Исследована трансlokация металлов в течение трех лет с момента загрязнения.

В современных условиях сельскохозяйственные товаропроизводители нередко сталкиваются с необходимостью производить продукцию на землях, в различной степени загрязненных тяжелыми металлами (ТМ). Известно, что загрязнение почв ТМ оказывает негативное влияние на возделываемые культуры, снижая количество ин и качество получаемой продукции, последнее является основным критерием ее использования. Поскольку Ростовская область производит значительное количество растенноедной продукции, возникает естественный вопрос об изучении механизмов трансlokации ТМ в сельскохозяйственные растения при разных уровнях техногенной нагрузки.

Изучение поступления ТМ в растения имеет несколько практических моментов. Во-первых, растения являются промежуточным резервуаром, через который металлы переходат из воды, воздуха и, главным образом, почвы в организм человека и животных, в связи с чем необходима разработка методов защиты пищевых цепей от проникновения токсинов в опасных концентрациях. Во-вторых, доказана токсичность ТМ для самих растений, что ставит ряд вопросов о реакции растений на их избыток в среде. И третий аспект — это выяснение возможности использования растений в качестве биоиндикаторов загрязнения среды ТМ [1].

В настоящее время в литературе нет достаточно данных о накоплении ТМ в растениях из-за влияния на этот процесс многих факторов: почвенно-климатических условий, свойств загрязняющих веществ, вида и возраста растений.

Цель работы — изучить закономерности трансlokации цинка и свинца в системе почва — растение.

МАТЕРИАЛ И МЕТОДЫ

При исследовании был проведен полеводческий опробный опыт. Почва опытного участка — чернозем обыкновенный мощный слабогумусированный тяжелосуглинистый на лессовидных суглинках, имеющий следующие свойства: рНвод = 7,5; содержание частиц < 0,01 мм — 58%; CaCO3 = 0,15%; Сorg. = 2,2%; обменных катионов Ca2+ + Mg2+ = 34,5 мг-экв/100 г; NO3, P2O5 = 11,3 мг/100 г; К2O = 0,9, 6,0 и 6,4 соответственно. Обеспеченность подвижным фосфором оценивается как высокая, обменным кальцием — повышенная [2]. Были выбраны наиболее часто встречающиеся на территории Ростовской области поллютанты — цинк и свинец. ТМ носили раздельно в форме легкорастворимых ацетатных солей с осем в сухом виде в пахотный горизонт (0–20 см) и тщательно перемешивали с почвой. Учетная площадь опытного делянок 1 м². Схема опыта включала следующие варианты: 1) контроль; 2) металл. В одной серии опытов вносили цинк в дозе 300 мг/кг почвы, в другой — свинец в дозе 96 мг/кг почвы. Дозы внесения соответствуют трем предельно допустимым концентрациям (ПДК) по валовым формам (ПДК Zn = 100 мг/кг, ПДК Pb = 32 мг/кг) и соотнесены с имеющимся уровнем загрязнения ими почв Ростовской области [3].

Исследуемая культура — яровой ячмень (Hordeum sativum distichum) сорта “Одесский-100”.
Таблица 1. Основные показатели климата Государственного сортоспытательного участка (ГСУ) "Ростовский" в 2000–2002 гг.

<table>
<thead>
<tr>
<th>Показатели</th>
<th>2000 г.</th>
<th>2001 г.</th>
<th>2002 г.</th>
<th>Среднее значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число дней с относительной влажностью < 30%</td>
<td>16</td>
<td>29</td>
<td>48</td>
<td>31</td>
</tr>
<tr>
<td>Осадки, всего за год, мм</td>
<td>625,5</td>
<td>805,7</td>
<td>550,2</td>
<td>660,5</td>
</tr>
<tr>
<td>Осадки, апрель–октябрь, мм</td>
<td>393,1</td>
<td>469,0</td>
<td>327,7</td>
<td>396,6</td>
</tr>
<tr>
<td>Сумма активных температур (> 10 °C), °C</td>
<td>3698</td>
<td>3306</td>
<td>3456</td>
<td>3487</td>
</tr>
<tr>
<td>Среднегодовая температура воздуха, °C</td>
<td>+9,99</td>
<td>+9,98</td>
<td>+10,23</td>
<td>+10,07</td>
</tr>
<tr>
<td>Гидротермический коэффициент за год</td>
<td>1,06</td>
<td>1,42</td>
<td>0,95</td>
<td>1,14</td>
</tr>
<tr>
<td>Минимальная температура воздуха, °C</td>
<td>-18,0</td>
<td>-19,5</td>
<td>-26,3</td>
<td>-21,3</td>
</tr>
<tr>
<td>Максимальная температура воздуха, °C</td>
<td>+37,0</td>
<td>+37,9</td>
<td>+38,3</td>
<td>+37,7</td>
</tr>
<tr>
<td>Период активной вегетации (> 10 °C), дней</td>
<td>183</td>
<td>180</td>
<td>178</td>
<td>180,3</td>
</tr>
<tr>
<td>Обеспеченность влагой</td>
<td>0,39</td>
<td>0,48</td>
<td>0,25</td>
<td>0,37</td>
</tr>
<tr>
<td>Суровость зимы</td>
<td>Умеренно мягкая</td>
<td>Мягкая</td>
<td>Мягкая</td>
<td>Мягкая</td>
</tr>
</tbody>
</table>

Для того чтобы добавленные в почву соли ТМ прошли трансформацию, между их внесением и посевом ячменя был выдержан период 8 месяцев.

Агroteхника возделывания культуры — зональная. Закладку опытов, проведение наблюдений и учет, отбор растительных проб осуществляли в соответствии с методиками полевого опыта [4] на базе государственного сортоспытательного участка (ГСУ) "Ростовский". Образцы растений отбирали в фазу полной спелости ярового ячменя.

Во время проведения опыта складывались благоприятные погодные условия, вместе с тем некоторые климатические показатели значительно различались по годам (табл. 1). Метеоусловия 2000 и 2001 годов были достаточно благоприятными для роста и развития ярового ячменя, тогда как 2002 год был засушливым.

Общее содержание TM в почве определяли рентген-флюоресцентным методом. Концентрацию подвижных соединений металлов в почве методом атомно-абсорбционной спектрофотометрии (ААС). Для их экстракции применяли 1N аммонийно-ацидатный буфер (CH3COONH4) – ААБ, pH 4,8 (при соотношении почва : раствор 1 : 5; время экстракции 18 ч), характеризующий актуальный запас элементов в почве [2].

Нижние металлы в растениях определяли методом мокрого осаждения в смеси кислот HNO3 + HCl [5] с последующим анализом на ААС.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Установлено, что общее содержание Zn в почве на контрольных участках за 3 года исследований составило в среднем 67 мг/кг (табл. 2). Содержание подвижных форм Zn равно 0,6 мг/кг (0,89% от общего содержания). Такие концентрации Zn даже для растений слабого выноса соответствуют очень низкому (< 1,0 мг/кг) уровню обесценивания этим микроэлементом. Это связано с тем, что в карбонатных почвах со слабошелочной реакцией среды не создаются условия для накопления подвижных форм TM из-за образования недоступных для растений соединений Zn. На карбонатных черноземах отмечается отчетливая низкая обеспеченность Zn [6]. Таким образом, дефицит отдельных элементов в экстремальных условиях ландшафтов и высокое их содержание при интенсивном антропогенном воздействии создают условия экологического риска.

Установлено, что содержание Zn в зерне ячменя в контроле составляет 21,6–24,8 мг/кг (табл. 3), что отвечает фоновому содержанию [7–9]. Концентрация Zn в стеблях была на уровне 16,6–18,7 мг/кг и оценивалась как дефицитная (< 20 мг/кг) [10].

Корневые системы часто содержат большие зеленые Zn, чем надземные части, в особенности есть растение выросло на почве, богатой Zn. При оптимальном содержании Zn в почве этот элемент может перемещаться из корней в накапливать ся в хохомых частях растений [11].

Концентрация Zn в корнях ярового ячменя была несколько ниже, чем в зерне (табл. 3), т. е. корни не выполняли барьёрную функцию в отношении этого элемента. Такое распределение Zn в ячмене, по-видимому, связано с недо-
Таблица 2. Содержание тяжелых металлов в черноземе обыкновенном в течение трех лет после загрязнения

<table>
<thead>
<tr>
<th>Варианты опыта</th>
<th>Общее содержание после загрязнения</th>
<th>Подвижная форма после загрязнения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-й год</td>
<td>2-й год</td>
</tr>
<tr>
<td>Цинк</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Контроль</td>
<td>68,4</td>
<td>65,3</td>
</tr>
<tr>
<td>Металл</td>
<td>355,9</td>
<td>348,7</td>
</tr>
<tr>
<td>HCP₉₅</td>
<td>11,4</td>
<td>14,9</td>
</tr>
<tr>
<td>Свинец</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Контроль</td>
<td>24,1</td>
<td>23,5</td>
</tr>
<tr>
<td>Металл</td>
<td>109,6</td>
<td>101,3</td>
</tr>
<tr>
<td>HCP₉₅</td>
<td>8,6</td>
<td>2,5</td>
</tr>
</tbody>
</table>

* HCP — наименьшая существенная разность.

Таблица 3. Содержание тяжелых металлов в различных органах растений ярового ячменя, мг/кг

<table>
<thead>
<tr>
<th>Варианты опыта</th>
<th>2000 г.</th>
<th>2001 г.</th>
<th>2002 г.</th>
<th>Среднее значение за 3 года</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>зерно</td>
<td>стебли</td>
<td>корни</td>
<td>зерно</td>
</tr>
<tr>
<td>Цинк</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Контроль</td>
<td>22,6</td>
<td>17,3</td>
<td>19,4</td>
<td>24,8</td>
</tr>
<tr>
<td>Металл</td>
<td>65,3</td>
<td>74,8</td>
<td>207,2</td>
<td>68,2</td>
</tr>
<tr>
<td>HCP₉₅</td>
<td>4,4</td>
<td>7,4</td>
<td>8,3</td>
<td>5,2</td>
</tr>
<tr>
<td>Свинец</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Контроль</td>
<td>0,4</td>
<td>1,4</td>
<td>4,1</td>
<td>0,3</td>
</tr>
<tr>
<td>Металл</td>
<td>2,4</td>
<td>10,2</td>
<td>17,4</td>
<td>2,0</td>
</tr>
<tr>
<td>HCP₉₅</td>
<td>0,2</td>
<td>0,3</td>
<td>1,4</td>
<td>0,2</td>
</tr>
</tbody>
</table>

татком его подвижных форм в карбонатном черноземе (табл. 2).

Известно, что на количество Zn в зерновых культурах оказывают существенное влияние условия влажности. Некоторое повышение содержания Zn во всех органах ячменя в 2001 г. как в действии, так и в посеве объясняется тем, что вегетационный период этого года был очень влажным. Благоприятные погодные условия данного года способствовали лучшей обеспеченности ячменя важным микроэлементом — цинком.

Общее содержание Pb в черноземе обыкновенном на незагрязненном черноземе составляет 25,0 мг/кг (табл. 2). Количество подвижных форм Pb в контроле больше, чем Zn, и равно 0,9 мг/кг (3,6% от общего содержания).

Содержание Pb в зерне было намного ниже, чем в других органах — от 0,3 до 0,4 мг/кг (табл. 3). Полученные значения согласуются с литературными данными по среднему содержанию элемента в ячмене [12, 13].

Основная часть Pb задерживалась в корнях растений, что указывает на существование защитных барьеров, препятствующих его накоплению в генеративных органах. Большее по сравнению с другими частями растений накопление металла в корнях объясняется тем, что при проникновении в плазму происходит инактивация и депонирование значительных его количеств в результате образования малоподвижных соединений с органическим веществом. Поглощенный корнями Pb находится в свободном клеточном пространстве или используются в процессах метаболизма. Только часть Pb с кислым током транспортируется в надземные органы [14, 15].
ТРАНСЛОКАЦИЯ ЦИНКА И СВИНЦА

Таким образом, распределение TM по органам ярового ячменя на незагрязненном черноземе следующее (рис. 1): для цинка - зерно > корни > стебли; для свинца - корни > стебли > зерно. Причем различия в содержании Pb в исследуемых органах растений выражены сильнее, чем в содержании Zn.

Загрязнение чернозема обыкновенного TM привело к накоплению их в растениях (табл. 3). Содержание Zn и Pb в зерне превышает ПДК (ПДК для Zn - 50 мг/кг, для Pb - 0,5 мг/кг) [16], причем концентрация Pb в 5 раз выше критической. Как показывают данные табл. 2, превышение ПДК по подвижным формам Pb также больше, чем по Zn.

Двухфакторный дисперсионный анализ показал, что содержание цинка и свинца достоверно варьирует в разных вариантах опыта (контроль и загрязнение) и органах растений (ANOVA: F = 23,9; P < 0,001 и F = 105,6; P < 0,001). Взаимодействие факторов также существенно сказывается на содержании обоих металлов (ANOVA: F = 215,2; P < 0,001).

В загрязненной почве происходит существенные изменения в перераспределении металлов по органам ярового ячменя (рис. 1). При моделировании загрязнения чернозема Zn установлен акропетальный характер накопления элемента в растениях ярового ячменя: корни > стебли > зерно. Концентрация Zn в корнях ячменя по сравнению с контролем увеличилась в 10 раз. Соотношение зерно : стебли : корни в контроле составляет 1 : 1 : 1; при загрязнении – 1 : 1 : 3.

Следовательно, основную барьерную функцию по снижению поступления Zn в растениях выполняет корень. При прохождении металла в корнях растений происходит его хелатирование и, как следствие, уменьшение подвижности. Предполагается, что определенную защитную функцию в корнях могут выполнять клетки почвенных Каспари, препятствующие движению веществ по межклеточному пространству и ограничивающие его переход в проводящие ткани [17, 18].

Рассчитана высота барьера на границе корень / стебель и стебель / зерно для ярового ячменя. Она определяется отношением содержания TM в стебле к его концентрации в зерне и количеству элемента в корнях. Для Zn на контроле высота барьера корень / стебель составляет 1,1, стебель / зерно - 0,8; при загрязнении высота барьера увеличивается до 2,8 и 1,1 соответственно.

Распределение Pb в органах ячменя в загрязненной почве имеет аналогичный характер (рис. 1): больше всего элемента находится в корнях, далее - в стеблях и меньше - в зерне. Соотношение зерно : стебли : корни в контроле равно 1 : 5 : 15, при загрязнении – 1 : 4 : 8. Таким образом, при повышении содержания Pb в почве соотношение выравнивается, металл преимущественно накапливается в зерне и стеблях. Высота барьеров при этом уменьшается до 2,2 на границе корень / стебль и до 3,5 на границе стебель / зерно против 3,1 и 4,7 соответственно в контроле.

Таким образом, природа и концентрация металлов в почве влияют на их распределение по органам ярового ячменя:

Zn: контроль – зерно > корни > стебли; загрязнение – корни > стебли > зерно;

Pb: контроль и загрязнение – корни > стебли > зерно.

Различия в содержании цинка и свинца по органам ячменя объясняются физиологической ролью их в живом организме. Цинк является эссенциальным микроэлементом, в то время как какую-либо особую роль свинца, присутствующего во всех растениях в природных условиях, в метаболизме до настоящего времени выявить не удалось. Поэтому у растений в процессе эволюции не выработано специфических механизмов по детоксикации этого поллютанта.

В случае с Zn внесенная доза оказалась не такой токсичной для растений ярового ячменя, во многом благодаря эффективно защитных механизмов на границе корень / стебель, стебель / зерно.
Таблица 4. Среднее содержание тяжелых металлов в различных органах растений ярового ячменя в течение 3 лет после загрязнения почвы, мкг/кг

<table>
<thead>
<tr>
<th>Варианты опыта</th>
<th>1-й год</th>
<th>2-й год</th>
<th>3-й год</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>зерно</td>
<td>стебли</td>
<td>корни</td>
</tr>
<tr>
<td>Контроль</td>
<td>23,0</td>
<td>17,5</td>
<td>19,9</td>
</tr>
<tr>
<td>Металл</td>
<td>65,4</td>
<td>73,4</td>
<td>20,4</td>
</tr>
<tr>
<td>HCR0,05</td>
<td>4,0</td>
<td>5,6</td>
<td>8,4</td>
</tr>
</tbody>
</table>

Цинк

<table>
<thead>
<tr>
<th>Свинец</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Подтверждением этому служит менее существенное уменьшение основных морфометрических и качественных характеристик растений под влиянием цинка по сравнению с влиянием свинца [19]. Определенную роль играет и различная степень увеличения их подвижных форм при загрязнении почвы (табл. 2).

Анализ данных по накоплению Pb корнями растений позволил прийти к заключению, что способ его поглощения — пассивный [1]. Несмотря на плохую растворимость Pb в почве, он поступает корневыми волосками и задерживается в стенках клеток. На незагрязненной почве перемещение Pb из корней в надземную часть ограничено. Главный процесс, с которым связано накопление Pb в тканях корней, — это отложение на стенках клеток.

Ограничение поступления ТМ в надземную часть растений — один из механизмов, определяющих устойчивость растений к повышенному содержанию металла в почве. Физиологический смысл этого явления, вероятно, состоит в снижении концентрации металла в тех участках, где наиболее активно протекают процессы biosинтеза.

Несмотря на относительно небольшую дозу внесения ТМ, наблюдается стойкое загрязнение ими растительной продукции. Количество Zn и Pb в генеративных органах ячменя превышало ПДК в течение трех лет с момента загрязнения (табл. 4).

Установлены различия в закономерностях накопления элементов со временем. В последействии происходит снижение количества Zn во всех органах ячменя на 8–10% в первый год последействия, и на 21–22% — во второй год последействия (табл. 4). Соотношение зерно / стебли / корни остается неизменным.

Транслокация Pb в последующие годы выражена значительно слабее. Концентрация Pb в зерне и стеблях в среднем во второй и третий год уменьшилась на 33 и 65% соответственно, в корнях изменилась незначительно (табл. 4). Следовательно, доля участия корней в накоплении металла постепенно возрастает и расширяется соотношение зерно / стебли / корни до 1 : 3 : 13. Это связано с тем, что когда Pb присутствует в питательных растворах в растворимой форме, корни растений способны поглощать его в большом количестве, при этом скорость поглощения возрастает с ростом концентрации и времени.

Показателем степени накопления элементов растениями является коэффициент биологического поглощения (КБП). KBP — это отношение содержания элемента в золе растений к общему содержанию его в почве. KBP позволяет косвенно судить о степени доступности элемента для растений и его поведении в системе “почва — растение”.

Установлено, что в контрольных вариантах все органы растений использовали соединения TM наиболее полно (табл. 5). Особенно это характерно для Zn, который является биологически необходимым микрокэлементом. В соответствии с величиной KBP Zn относится к группе элементов сильного накопления, Pb — к группе элементов слабого и очень слабого захвата.

Существенным различием между этими двумя элементами является также то, что при загрязнении почвы Zn KBP снижается, а Pb — возрастает. Отмеченные закономерности сохраняются и в последействии. На наш взгляд, это объясняется...
Транслокация цинка и свинца

биохимической роли металлов в растениях и способами их поглощения и переноса. Для Zn характерен метаболический перенос, он поглощается против градиента концентрации [20], так как в процессе эволюции у растений имеются определенные защитные механизмы для снижения поступления избыточных количеств этого элемента в генеративные органы. При повышенных концентрациях Pb в почве происходит в основном пассивный перенос.

Оценить величину КБП, следует отметить, что вегетативные органы накапливают больше поллютантов, чем генеративные, особенно свинца.

Данные корреляционного анализа показывают умеренную связь между общим содержанием металлов в почве и в растениях (от 0,45 до 0,56). Связь между подвижными формами соединений Zn и Pb в почве и их содержанием в зерне и стеблях ярового ячменя во все годы исследования была сильной (коэффициент корреляции 0,83–0,96).

В связи с этим более информативным критерием оценки количества металлов, переносимых из почвы в растения, является коэффициент накопления (КН). Он рассчитывается как отношение содержания элемента в золе растений к содержанию его подвижных форм в почве, так как именно они доступны растениям. Подвижные формы металлов извлекаются вытяжкой ААБ.

Самые высокие величины КН, как и КБП, характерны для растений, выращенных на незагрязненной почве (табл. 5). При загрязнении почвы установлено значительное снижение КН для обоих металлов; что, вероятно, обусловлено защитной реакцией растений на избыток элементов в почве. Наиболее существенное уменьшение КН характерно для Zn. Следует отметить, что оценка тенденции накопления различных поллютантов в растениях, полученных на основе показателей КБП и КН, неоднозначна. Например, в случае загрязнения Pb КПБ уменьшается, а КН возрастает. Это связано с тем, что растения могут использовать не только обменные формы элементов (экстракция 1 N ААБ), но и другие подвижные формы, содержание которых увеличивается в ростом загрязнения. Так, при внесении Pb в почву идет преимущественное накопление комплексных форм (экстракция ЭДТА) в группе подвижных соединений [21]. Таким образом, при расчете КН желательно использовать содержание всей группы подвижных соединений, включающей обменные, комплексные и специфически сорбированные формы (экстракция 1 N HCl минус количество ТМ, извлекаемых ААБ).

Одним из показателей накопления элементов растениями является величина биологического выноса TM с урожаем растений. Биологический вынос с основной и побочной продукцией определяется величиной урожая, содержанием металлов в растениях, а также биологическими особенностями возделываемых культур. Вынос Zn с урожаем ячменя (зерно + солома) в среднем за 3 года составил в контроле 170,3 г/га. Во влажные годы вынос возрастает в связи с ростом биомассы до 225,5 г/га. В вариантах загрязнения наблюдается значительное увеличение выноса элемента растениями до 634,2 г/га.

Вынос Pb с урожаем ячменя (зерно + солома) составлял в контроле 9,3 г/га. Меньшая величина его выноса по сравнению с Zn связана с тем, что, согласно КБП, Pb относится к группе элементов слабого и очень слабого захвата. При загрязнении вынос Pb существенно увеличился до 53,6 г/га.

Таблица 5. Коэффициент биологического поглощения (КБП) и коэффициент накопления (КН) Zn и Pb органами растений ярового ячменя в течение 3 лет после загрязнения почвы

<table>
<thead>
<tr>
<th>Варианты опыта</th>
<th>После загрязнения Zn</th>
<th>После загрязнения Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-й год</td>
<td>2-й год</td>
</tr>
<tr>
<td></td>
<td>зерно</td>
<td>стебли</td>
</tr>
<tr>
<td>КБП</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Контроль</td>
<td>0,34</td>
<td>0,26</td>
</tr>
<tr>
<td>Металл</td>
<td>0,18</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КН</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Контроль</td>
<td>38,33</td>
<td>29,17</td>
</tr>
<tr>
<td>Металл</td>
<td>1,98</td>
<td>2,22</td>
</tr>
</tbody>
</table>

5 ВЕСТНИК ЮЖНОГО НАУЧНОГО ЦЕНТРА РАН т. 2 № 4 2006
Выводы

Загрязнение Zn и Pb ведет к повышению содержания металлов во всех органах ячменя. Биохимический анализ ТМ с урожаем ярового ячменя также выявляется. Влияние Pb на качество зерна ячменя выражено сильнее (превышение ПДК Pb в 5 раз, Zn — в 1,3 раза). В последующие годы транслокации Zn и Pb в растения снижается. Вместе с тем наблюдается стойкое загрязнение этим растительной продукции в течение трех лет после загрязнения.

Основную барьерную функцию по инактивации исследуемых ТМ выполняют корни растений. Внесение ТМ способствовало увеличению их количества в корнях ячменя: Pb — в 4 раза, Zn — в 10 раз.

Устойчивость ячменя к загрязнению Zn выше, чем к загрязнению Pb. Это выражается в значительном увеличении высоты барьера на границе корень/стебель и уменьшении величины КВП. При внесении Pb в почву установлена обратная тенденция. Отмеченные закономерности сохраняются и в последствии. Различия в накоплении элементов связаны с биохимической ролью металлов в растениях и способами их поглощения и переноса.

Расчет коэффициента накопления (КН) ТМ предлагается проводить с учетом всей группы подвижных соединений ТМ в почве.

Список литературы

1. Минкина Т.М., Крыщенко В.С., Федосеенко С.В. Качество зерна пшеницы ячменя при тяжелых загрязнении чернозема обыкновенного // Научная мысль Кабардина. 2003. Приложение. Вып. 2. С. 119—123.
5. Методические указания по определению тяжелых металлов в кормах и растениях и их подвижных соединениях в почвах. М.: ЦИНАО, 1993. 26 с.
12. Азаров Б.Ф., Соловченко В.Д. Содержание тяжелых металлов в сахарной свекле и ячмене в зависимости от их концентрации в почве и уровня удобренно // Химия в сельском хозяйстве. 1995. № 5. С. 31—35.
14. Гардис И.Ю. Накопление тяжелых металлов в почвах и растениях вокруг металлургических предприятий: Автореф. дис. ... канд. биол. наук. Новосибирск, 1985. 16 с.
17. Ягодин Б.А., Кадин В.В., Цырко Э.А., Маркелова В.Н., Саблин С.М. Тяжелые металлы в системе почва — растение // Химия в сельском хозяйстве. 1996. № 5. С. 43—45.
20. Звягин А.А., Плеханова В.А., Ганцев И.Г. Поступление тяжелых металлов в томаты в гидропонной культуре // Агрохимия. 2002. № 8. С. 82—85.
TRANSLOCATION OF ZINK AND LEAD ON TECHNOGENIC POLLUTED SOIL

T.M. Minkina

The differences of Zn and Pb distribution in the body of barley cultivated on unpolluted and polluted chernozem were established in field experiment. The experiment shows that roots of plants carry out the main barrier function to heavy metals inactivation. The resistance of barley to soil pollution by Zn is higher than to Pb. The heavy metal translocation was investigated during three years after pollution.
REFERENCES

metals accumulation by crops in the forest steppe and steppe Volga region]. Samara, Samara University Publ.: 220 p. (In Russian).

