НАУКА ЮГА РОССИИ (ВЕСТНИК ЮЖНОГО НАУЧНОГО ЦЕНТРА) 2016 Т. 12 № 4 С. 18–24 SCIENCE IN THE SOUTH OF RUSSIA 2016 VOL. 12 No 4 P. 18–24

ФИЗИКА

УДК 537.226.4

СТРУКТУРА, ДИЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ЭФФЕКТ МЁССБАУЭРА В КЕРАМИКАХ $AFe_{2/3}W_{1/3}O_3$ (A = Sr, Pb)

© 2016 г. А.В. Павленко^{1, 2}, С.П. Кубрин², Л.А. Шилкина²

Аннотация. Проведены комплексные исследования структуры и эффекта Мёссбауэра при комнатной температуре и диэлектрических характеристик при T = 10-300 К керамик мультиферроиков ферровольфрама свинца (PFW) и ферровольфрама стронция (SFW). Показано, что объекты обладают структурой типа перовскита, однофазны и практически беспримесны, при этом керамике PFW свойственна кубическая структура с параметром элементарной ячейки a = 3.980 Å, a SFW – тетрагональная, с параметрами перовскитовой ячейки $a_n = 3.942$ Å и $c_n = 3.956$ Å. Мёссбауэровский спектр керамик представляли собой зеемановский секстет с низким значением сверхтонкого магнитного поля на ядра ⁵⁷Fe, а величина изомерного сдвига соответствует ионам Fe³⁺ в октаэдрическом окружении. Выявлено, что в SFW при T = 10-200 К величины ϵ/ϵ_0 и tg δ от температуры и частоты измерительного электрического поля практически не зависят, а дальнейшее повышение температуры приводит к резкому росту ϵ/ϵ_0 , усилению ее дисперсии, что обусловлено проявлением эффектов максвеллвагнеровской поляризации и релаксации. Установлено, что в PWF при T = (10÷30) К происходит фазовый переход сегнетоэлектрик-релаксор \rightarrow параэлектрик, что также подтвердилось при исследовании P(E) зависимостей. Удовлетворительно аппроксимировать экспериментальные релаксационные спектры PWF удается только в рамках модели для диэлектрика с функцией распределения времен релаксации Гаврильяка – Негами.

Ключевые слова: мультиферроики, керамика, диэлектрические характеристики, эффект Мёссбауэра.

STRUCTURE, DIELECTRIC CHARACTERISTICS AND THE MÖSSBAUER EFFECT IN $AFe_{23}W_{13}O_3$ (A = Sr, Pb) CERAMICS

A.V. Pavlenko^{1, 2}, S.P. Kubrin², L.A. Shilkina²

Complex researches of structure and the Mossbauer effect at a room temperature and dielectric characteristics at T = 10-300 K were carried out for lead ferrotungsten (PFW) and strontium ferrotungsten multiferroic ceramics. It is indicated that the obtained objects have perovskite structure type with cubic lattice cell (a = 3.9806 Å) in PFW, and tetragonal lattice cell ($a_p=3.9419$ Å, $c_p=3.9556$ Å and $c_p/a_p=1.0035$) in SFW. Additionally they are single phased and almost pure. The Mössbauer spectra was like a Zeeman sextet with low magnetic field value of ⁵⁷Fe atomic centre, and isomer shift value corresponds to Fe³⁺ ions situated in the oxygen octahedron. It is deduced that in SFW the $\varepsilon/\varepsilon_0$ and tg δ values are almost independent of temperature and frequency of the measuring electric field at T = 10-200 K, and further temperature increase leads to $\varepsilon/\varepsilon_0$ sharp increase and amplification of its dispersion due to the manifestation of the Muswell-Wagner polarization and relaxation effects. It is also established that magnetoelectric interaction appears in PWF at $T = (10\div30)$ K due to the spin-glass state occurrence. Relaxor ferroelectric \rightarrow paraelectric phase transition occurs at $T = (160\div195)$ K which is also confirmed in the study of P(E) dependences. The adequate approximation of experimental relaxation spectra for PWF is successful only for the dielectric model with the Gavrilyak-Negami (Havriliak-Negami) distribution function of relaxation times.

Keywords: multiferroics, ceramics, dielectric characteristics, Mössbauer effect.

¹ Южный научный центр Российской академии наук (Southern Scientific Centre, Russian Academy of Sciences, Rostov-on-Don, Russian Federation), Российская Федерация, 344006, г. Ростов-на-Дону, пр. Чехова, 41

² Научно-исследовательский институт физики Южного федерального университета (Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russian Federation), Российская Федерация, 344090, г. Ростов-на-Дону, e-mail: tolik_260686@mail.ru

ВВЕДЕНИЕ

Магнитоэлектрические материалы, в которых сосуществуют магнитное и электрическое упорядочения, в последние годы достаточно интенсивно исследуются, что обусловлено большим потенциалом их использования в устройствах памяти, спинтроники, микроэлектроники, датчиков магнитного поля и электрически перестраиваемых СВЧ-устройств [1]. Соединения AFe_{2/3}W_{1/3}O₃ (A = Sr, Pb) являются типичными представителями данного класса материалов, характеризуются достаточно высокими температурами магнитных фазовых переходов, в связи с чем часто рассматриваются в качестве компонентов новых магнитоэлектрических композиций [2]. Однако несмотря на то, что эти соединения впервые были синтезированы более 50 лет назад, к настоящему времени их свойства изучены фрагментарно, а сведения о характеристиках (температурах сегнетоэлектрического и магнитного фазовых переходов, магнитоэлектрического и магнитодиэлектрического эффектов и пр.) зачастую неоднозначны, что связано, скорее всего, с сильной чувствительностью их свойств к термодинамической предыстории изготовления. Так, в ферровольфрамате свинца, сочетающего сегнетоэлектрические (температура Кюри, *T_c*, ~(160–200) К) и антиферромагнитные (геликоидальная магнитная структура G-типа, температура Нееля, $T_{\rm N}$, ~380 К) свойства, диэлектрическая релаксация в окрестности $T_{\rm C}$ практически не изучена, а упругие характеристики в широком диапазоне температур впервые были исследованы

сравнительно недавно [3]. В ферровольфрамате стронция, который при температурах ниже 373 К сочетает в себе ферромагнитные и антисегнетоэлектрические свойства, в свою очередь, изучены подробно лишь структура и магнитные характеристики [4], а диэлектрические и магнитоэлектрические свойства анализировались крайне редко. В связи с этим представляется весьма актуальной работа по изучению структуры, эффекта Мёссбауэра и диэлектрических характеристик данных объектов в широком температурном ((10÷300) К) и частотном ((25÷10⁶) Гц) диапазонах, что и стало предметом настоящего исследования.

19

МЕТОДЫ ПОЛУЧЕНИЯ И ИССЛЕДОВАНИЯ ОБРАЗЦОВ

Синтез образцов SrFe_{2/3}W_{1/3}O₃ (SWF) осуществляли методом твердофазных реакций из карбоната SrCO₃ и оксидов WO₃, Fe₂O₃ высокой степени чистоты (ч, чда) обжигом в две стадии, с промежуточным помолом, при температурах $T_1 = 1273$ К и $T_2 = 1473$ К и $\tau_1 = 4$ час и $\tau_2 = 2$ час. Режим спекания керамических заготовок SWF составил $T_{cn} = 1623$ К и $\tau_{cn} = 2,5$ час. Получение образцов PbFe_{2/3}W_{1/3}O₃ (PWF) осуществляли аналогичным способом из оксидов PbO, WO₃, Fe₂O₃ высокой степени чистоты (ч, чда) при $T_1 = T_2 = 1123$ К, $\tau_1 = \tau_2 = 4$ час, $T_{cn} = 1373$ К, $\tau_{cn} = 2,5$ час.

Рентгенографическое исследование проводили на дифрактометре ДРОН-3 (фокусировка по Брэггу – Брентано) с использованием СоКαизлучения. Расчет параметров ячейки выполнен по стандартной методике [5], погрешно-

Рис. 1. Рентгенограммы керамик PFW (звездочкой обозначена линия примесной фазы) и SFW (точкой обозначена сверхструктурная линия) при комнатной температуре. На вставках – фрагменты микроструктур Fig. 1. The XRD patterns of PFW (asterisk – line impurity phase) and SFW (point – superstructure line) ceramics at the room temperature. The inserts – fragments of microstructures

сти измерений имеют следующие величины: $\Delta a = \Delta b = \Delta c = \pm 0.002$ Å. Мёссбауэровские спектры измерялись на спектрометре МС-1104Ем в геометрии пропускания. Источником у-квантов служил ⁵⁷Со в матрице хрома. Спектры калиброваны относительно металлического α-Fe. Модельная расшифровка осуществлялась программой UnivemMS. Измерения комплексной диэлектрической проницаемости $\varepsilon^* = \varepsilon' - i\varepsilon''$ (є' и є'' – действительная и мнимая части є* соответственно) в температурном ((10-200) К) и частотном ((10²-10⁶) Hz) интервалах проводили с помощью прецизионного анализатора импеданса Wayne Kerr 6500 В. Для измерения удельного сопротивления r использовался High Resistance Meter Agilent E4339 В. Петли диэлектрического гистерезиса (зависимость поляризованности Р от напряженности электрического поля Е) при $T \sim 80 \text{ K}$ на частоте 50 Hz получали с помощью осциллографической установки Сойера – Тауэра.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рисунке 1 приведены рентгенограммы материалов. Оба исследуемых исследуемых образца обладают структурой типа перовскита, однофазны и практически беспримесны (в PFW присутствует одна линия посторонней фазы $(2\theta = 29.92^{\circ})$ с относительной интенсивностью, не превышающей 1 %), при этом им свойственна достаточно однородная зеренная структура из кристаллитов размером 2-7 мкм. Кристаллическая решетка PFW имеет кубическую симметрию с параметром элементарной ячейки a = 3.981 Å, что соответствует данным литературы [6]. Керамике SFW свойственна тетрагональная структура с параметрами перовскитовой ячейки $a_{\rm n} = 3.942$ Å и $\hat{c}_{n} = 3.956$ Å. Однако предполагая, что линия при $2\theta = 32.3^{\circ}$ (рис. 1б) является сверхструктурной, для исследуемого образца мы можем выбрать, по аналогии с работой [7] для соедине-

Рис. 2. Мёссбауэровские спектры керамик PFW и SFW при T = 300 К

Fig. 2. Mössbauer spectra of PFW and SFW ceramics at T = 300 K

ния Sr₂FeWO₆ (пространственная группа I4/m, a = 5.570 Å (диагональ основания перовскитовой ячейки), c = 7.909 Å (удвоенный параметр с перовскитовой ячейки)), элементарную ячейку с параметрами a = 5.575 Å, c = 7.911 Å.

На рисунке 2 и в таблице 1 приведены результаты исследования эффекта Мёссбауэра в SFW и PFW при комнатной температуре. Мёссбауэровские спектры обоих материалов, в отличие от данных работы [8], представляли собой зеемановский секстет с низким значением сверхтонкого магнитного поля на ядра ⁵⁷Fe, а величина изомерного сдвига соответствует ионам Fe³⁺ в октаэдрическом окружении. Признаков наличия в данных структурах катионов Fe⁴⁺ и/или Fe²⁺ не обнаружено. Низкое значение величины напряженности сверхтонкого магнитного поля связано с относительно низкой (≈373–400 K) температурой магнитного перехода.

Зависимости $\varepsilon/\varepsilon_0(T)$ и tg $\delta(T)$ (ε_0 – электрическая

Таблица 1. Параметры мессбауэровских спектров образцов керамик PFW и SFW Table1. Mössbauer spectra parameters of the samples of PFW and SFW ceramics

	Компонента	$\delta \pm 0,02$, mm/c	$\Delta/\epsilon \pm 0,02$, mm/c	$B_{\rm eff} \pm 0,2, T$	$S \pm 2, \%$	$G \pm 0,02$, mm/c	χ^2
SFW	Секстет	0,38	-0,06	35,2	100	1,36	13,46
PFW	Секстет	0,40	0,01	29,5	100	1,42	1,22

Примечание. δ – изомерный химический сдвиг; Δ – квадрупольное расщепление парамагнитных компонент; ε – квадрупольное смещение; $B_{\rm eff}$ – эффективное магнитное поле на ядрах Fe³⁷; S – площадь компонент спектра; G – ширина линий спектра; χ^2 – критерий Пирсона.

Note. δ – the isomeric chemical shift value; Δ – the quadrupolar splitting value; ε – the quadrupole offset; Beff – the effective magnetic field in the nuclei Fe⁵⁷; S – the area of spectrum components; G – the spectral line width; χ^2 – the Pearson criterion.

Рис. 3. Зависимости $\varepsilon/\varepsilon_0(T)$ и tg $\delta(T)$ керамик PWF (a, δ) и SWF (s, ε) при T = 10... 325 К и f = 25... 10⁶ Гц, снятые в режиме охлаждения. На вставке – зависимость P(E) керамики SFW при T = 77 К **Fig. 3.** Dependences $\varepsilon'/\varepsilon_0(T)$ and tg $\delta(T)$ of the PWF (a, δ) and SWF (s, ε) ceramics in the frequency range of f = 25... 10⁶ Hz and the

постоянная) керамик SWF и PWF в рассматриваемом температурно-частотном диапазоне представлены на рисунке 3. В SWF при T = 10-200 К величины $\varepsilon/\varepsilon_0$ и tg δ от температуры и частоты измерительного электрического поля практически не зависят, а дальнейшее повышение температуры сопровождается резким ростом $\varepsilon/\varepsilon_0$ и постепенным усилениемеедисперсии,а на зависимостях tg $\delta(T)$ формируются максимумы (tg δ (T_{max}) ~ 5–7), сдвигающиеся в область высоких температур по мере увеличения *f*. В связи с тем, что SWF

является антисегнетоэлектриком с $T_{\rm C} \sim 473$ K [4], а исследуемая керамика при комнатной при комнатной а исследуемая керамика температуре характеризуется достаточно низким электросопротивлением ($\rho \sim 10^5 \text{ Om} \cdot \text{M}^{-1}$), наблюдаемое связано с эффектами максвеллвагнеровской (межслоевой) поляризации И релаксации [9; 10], часто проявляющимися в керамических материалах, являющихся по своей структуре электрически неоднородными макроскопическом уровне, в частности из-за разной проводимости и диэлектрической проницаемости

temperature range of T = 10...325 K. The insert in the figure – the dependence of P(E) SFW ceramics at T = 77 K.

Рис. 4. Зависимости $\varepsilon'/\varepsilon_0(f)$ и $\varepsilon''/\varepsilon_0(f)$ керамики PWF при температурах 20–190 K и частотах (20÷106) Hz **Fig. 4.** Dependences $\varepsilon'/\varepsilon_0(f)$ and $\varepsilon''/\varepsilon_0(f)$ of the PWF ceramics in the frequency range of $f = (20\div106)$ Hz and the temperature range of T=20-190 K

зерен и границ зерен. Это подтвердилось и при исследовании петель диэлектрического гистерезиса в объекте: при комнатной температуре P(E) зависимость вследствие высокой проводимости керамики имела формула эллипса, а при T < 200 К носила линейный характер.

Керамике PWF было свойственно более сложное поведение диэлектрических характеристик: при $T = (10 \div 30)$ К формируются слабовыраженные максимумы $\varepsilon/\varepsilon_0(T)$ и tg $\delta(T)$, связанные, скорее всего, с проявлением магнитоэлектрического взаимодействия, обусловленного возникновением спин-стекольного состояния в объекте при этих Т [11]. Дальнейший рост температуры сопровождается увеличением $\varepsilon/\varepsilon_0$ и tg δ и формированием при $T = (160 \div 195)$ К частотнозависимых размытых максимумов $\varepsilon/\varepsilon_0(T)$ и tg $\delta(T)$ (релаксация и сопровождающая ее дисперсия происходят при T < 200 К, сдвиг температуры максимума ($\Delta T_{\rm m}$) равен 20 К, глубина дисперсии $\Delta(\epsilon/\epsilon_0)_{\rm m} = 270)$, связанных с фазовым переходом сегнетоэлектрик-релаксор \rightarrow параэлектрик, что также подтвердилось при исследовании *P*(*E*)-зависимостей. Далее следует практически бездисперсный участок $\varepsilon/\varepsilon_{o}(T)$ в интервале (195÷215) К с последующим частотным «расслоением» температурных зависимостей є/є, при *T* > 215 K.

На рисунке 4 представлены зависимости $\varepsilon'/\varepsilon_0(f)$ и $\varepsilon''/\varepsilon_0(f)$ в температурном диапазоне (30–200) К. Хорошо видно, что в анализируемом частотном диапазоне мы фиксируем только низкочастотную часть релаксационного диэлектрического спектра, что не позволяет восстановить функцию распределения времен релаксации непосредственно из эксперимента. Для аппроксимации экспериментальных спектров $\varepsilon'(f)$ и $\varepsilon''(f)$, проводившейся по формулам:

$$\varepsilon' = \varepsilon_{\infty} + (\varepsilon_{s} - \varepsilon_{\infty}) \int_{0}^{\infty} \frac{f(\tau)d\tau}{1 + (\omega\tau)^{2}},$$
$$\varepsilon'' = (\varepsilon_{s} - \varepsilon_{\infty}) \int_{0}^{\infty} \frac{\omega\tau f(\tau)d\tau}{1 + (\omega\tau)^{2}},$$
$$\int_{0}^{\infty} f(\tau)d\tau = 1, \qquad (1)$$

где ε_s и ε_{∞} – статическая и высокочастотная диэлектрические проницаемости соответственно, нами были использованы различные модели (Дебая, равновероятного распределения, Коула – Коула, Дэвидсона – Коула), однако удовлетворительно аппроксимировать экспериментальные результаты удалось только в рамках модели для диэлектрика с функцией распределения времен релаксации $f(\tau)$ Гаврильяка – Негами:

$$f(\tau) = \frac{1}{\pi} \frac{(\tau/\tau_0)^{\alpha\gamma} \sin(\lambda\theta)}{\left[(\tau/\tau_0)^{2\alpha} + 2(\tau/\tau_0)^{\alpha} \cos(\alpha\pi) + 1\right]^{\gamma/2}},$$

$$\theta = \arctan\left[\frac{\sin(\gamma\pi)}{(\tau/\tau_0)^{\alpha} + \cos(\alpha\pi)}\right].$$
(2)

Результаты выполненного по формулам (1) фитинга зависимостей $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$ и $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$ для T = 120-180 К иллюстрируются рисунком 5. Важно отметить, что реальная функция распределения $f(\tau)$, отражающая релаксационные процессы в

PWF, будет иметь еще более сложный вид, и для ее более точного определения необходимо знать спектры комплексных диэлектрического модуля и проводимости.

При аппроксимации зависимости $T_{\rm m}(f)$ (рис. 6, вставка) наилучшие результаты были достигнуты в случае использования соотношения Фогеля – Фулчера $f = f_0 \exp(E_{\rm act}/(k \cdot (T_{\rm m} - T_{\rm f}))) (f_0 - частота попыток преодоления потенциального барьера <math>E_{\rm act}$, k-постоянная Больцмана, $T_{\rm f}$ -температура Фогеля – Фулчера, интерпретируемая как температура «статического замораживания» электрических диполей). Рассчитанное значение $E_{\rm a} \approx 0.036$ эВ в целом характерно для сегнетоэлектриков-

Рис. 5. Зависимости $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$ и $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$ керамики PWF при температурах 120 K, 140 K и 180 K в частотном интервале (20÷106) Hz (маркеры). Сплошные линии – результаты расчета **Fig. 5.** Dependences $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$ and $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$ of the PWF ceramics in the frequency range of $f = (20\div106)$ Hz and the temperature of 120 K, 140 K and 180 K

СПИСОК ЛИТЕРАТУРЫ

- Пятаков А.П., Звездин А.К. 2012. Магнитоэлектрические материалы и мультиферроики. УФН. 182(6): 593–620.
- Brzezińska D., Skulski R., Bochenek D., Niemiec P. 2016. The properties of (1-x)(0.5PZT-0.5PFW)-xPFN ceramics. *Integrated Ferroelectrics*. 173(1): 104–112.
- Смирнова Е.П., Сотников А.В., Schmidt H., Weihnacht M. 2013. Температурные зависимости упругих модулей мультиферроика PbFe_{2/3}W_{1/3}O₃. Письма в ЖТФ. 39(6): 9–15.

Рис. 6. Зависимость $(\varepsilon/\varepsilon_0)^{-1}(T)$ керамики РWF. На вставке – зависимости $(\ln(f_0) - \ln(f))^{-1}$ от T_m при температурах (160÷195) К **Fig. 6.** Dependence $(\varepsilon/\varepsilon_0)^{-1}(T)$ of the PWF ceramics. The insert in the figure – the dependences $(\ln(f_0) - \ln(f))^{-1}(T_m)$ PFW ceramics on (T_m) at T = (160÷195) K

релаксоров, а значение $T_f \approx 154$ К, в окрестности которой на зависимостях tg $\delta(T)$ формируются аномалии, оказалось достаточно близко к T_C . Температура Бёрнса же (температура, ниже которой в сегнетоэлетриках-релаксорах появляются полярные нанообласти), соответствующая температуре, начиная с которой на зависимости ($\varepsilon'/\varepsilon_0$)⁻¹(T) выполняется закона Кюри – Вейсса, в керамике PFW более чем на 80 К превышала T_C и составила ~280 К. Последнее говорит о том, что в керамике PFW разумно ожидать более яркого проявления магнитоэлектрического и магнитодиэлектрического эффектов, если данные измерения проводить в присутствии постоянного электрического поля.

ЗАКЛЮЧЕНИЕ

Полученные в работе результаты необходимо использовать при разработке мультиферроидных материалов на основе $PbFe_{23}W_{1/3}O_3$ и $SrFe_{23}W_{1/3}O_3$.

Работа выполнена при финансовой поддержке гранта РФФИ № 16-32-60095 мол а дк.

- Ivanov S.A., Erricsson S.-G., Tellgren R., Rundlof H. 2001. Evolution of the atomic and magnetic structure of Sr₃Fe₂WO₆; A temperature dependent neutron powder diffraction study. *Mat. Res. Bullet.* 36: 2585–2596.
- 5. Фесенко Е.Г. 1972. Семейство перовскита и сегнетоэлектричество. М., Атомиздат: 248 с.
- Lu C.-H., Ishizawa N., Shinozaki K., Mizutani N., Kato M. 1988. Synthesis and cell refinement of PbFe_{2/3}W_{1/3}O₃ and pyrochlore-related phase in the Pb-Fe-W-O system. *J. Mater. Sci. Lett.* 7: 1078.

- Fu Z., Li W. 1995. Phase transition and crystal structure of a new compound Sr₂FeWO₆₃. *Science in China, ser. A.* 38(3): 309–316.
- Viola M. del C., Augsburger M.S., Pinacca R.M., Pedregosa J.C., Carbonio R.E., Mercaderc R.C. 2003. Orderdisorder at Fe sites in SrFe_{2/3}B_{1/3}O₃ (B=Mo, W, Te, U) tetragonal double perovskites. *Journal of Solid State Chemistry*. 175(2): 252–257.
- Павленко А.В., Турик А.В., Резниченко Л.А., Шилкина Л.А., Константинов Г.М. 2011. Диэлектрическая релаксация в керамике PbFe_{1/2}Nb_{1/2}O₃. *Физика твердого тела*. 53(9): 1773–1776.
- Павленко А.В., Турик А.В., Резниченко Л.А., Кошкидько Ю.С. 2014. Диэлектрическая релаксация и магнитные характеристики керамики Bi0.5La0.5MnO3. Физика *твердого тела*. 56(6): 1093–1099.
- Chen L., Bokov A.A., Zhu W., Wu H., Zhuang J., Zhang N., Tailor H.N., Ren W., Ye Z.G. 2016. Magnetoelectric relaxor and reentrant behaviours in multiferroic Pb(Fe_{2/3}W_{1/3})O₃ crystal. *Sci. Rep.* 6: Article number: 22327. doi: 10.1038/srep22327

REFERENCES

- Pyatakov A.P., Zvezdin A.K. 2012. Magnetoelectric and multiferroic media. *Phys. Usp.* 55: 557–581. doi: 10.3367/ UFNr.0182.201206b.0593
- Brzezińska D., Skulski R., Bochenek D., Niemiec P. 2016. The properties of (1-x)(0.5PZT-0.5PFW)-xPFN ceramics. *Integrated Ferroelectrics*. 173(1): 104–112.
- 3. Smirnova E.P., Sotnikov A.V., Schmidt H., Weihnacht M. 2013. Temperature dependence of the elastic moduli of multiferroic

PbFe_{2/3}W_{1/3}O₃ ceramics. *Technical Physics Letters*. 39(3): 277–279.

- Ivanov S.A., Erricsson S.-G., Tellgren R., Rundlof H. 2001. Evolution of the atomic and magnetic structure of Sr₃Fe₂WO₃; A temperature dependent neutron powder diffraction study. *Mat. Res. Bullet.* 36: 2585–2596.
- Fesenko E.G. 1972. Semeystvo perovskita i segnetoelektrichestvo [Perovskite Family and Ferroelectricity]. Moscow, Atomizdat: 248 p. (in Russian).
- Lu C.-H., Ishizawa N., Shinozaki K., Mizutani N., Kato M. 1988. Synthesis and cell refinement of PbFe_{2/3}W_{1/3}O₃ and pyrochlorerelated phase in the Pb-Fe-W-O system. *J. Mater. Sci. Lett.* 7: 1078.
- Fu Z., Li W. 1995. Phase transition and crystal structure of a new compound Sr, FeWO₃. Science in China, ser. A. 38(3): 309–316.
- Viola M. del C., Augsburger M.S., Pinacca R.M., Pedregosa J.C., Carbonio R.E., Mercaderc R.C. 2003. Order-disorder at Fe sites in SrFe_{2/3}B_{1/3}O₃ (B=Mo, W, Te, U) tetragonal double perovskites. *Journal of Solid State Chemistry*. 175(2): 252–257.
- Pavlenko A.V., Turik A.V., Reznichenko L.A., Shilkina L.A., Konstantinov G.M. 2011. Dielectric relaxation in the PbFe_{1/2}Nb_{1/2}O₃ ceramics. *Physics of the Solid State*. 53(9): 1872–1875.
- Pavlenko A.V., Turik A.V., Reznichenko L.A., Koshkid'ko Y.S. 2014. Dielectric relaxation and magnetic characteristics of the Bi_{0.5}La_{0.5}MnO₃ ceramics. *Physics of the Solid State*. 56(6): 1137–1143.
- Chen L., Bokov A.A., Zhu W., Wu H., Zhuang J., Zhang N., Tailor H.N., Ren W., Ye Z.G. 2016. Magnetoelectric relaxor and reentrant behaviours in multiferroic Pb(Fe_{2/3}W_{1/3})O₃ crystal. *Sci. Rep.* 6: Article number: 22327. doi: 10.1038/srep22327

Поступила 22.07.2016