Сапрыгин Владислав Валерьевич

ИЗУЧЕНИЕ РАСПРЕДЕЛЕНИЯ ХЛОРОФИЛЛА *а* В АЗОВСКОМ МОРЕ ПО ДАННЫМ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА И РЕЗУЛЬТАТАМ СУДОВЫХ ИЗМЕРЕНИЙ

Специальность 25.00.28 – Океанология

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата географических наук

Ростов-на-Дону

Работа выполнена в Институте аридных зон Южного научного центра РАН и Мурманском морском биологическом институте Кольского научного центра Российской академии наук

Научный руководитель: Бердников Сергей Владимирович

доктор географических наук,

главный учёный секретарь ЮНЦ РАН, заведующий отделом Института

аридных зон ЮНЦ РАН

Официальные оппоненты: Титов Олег Владимирович

доктор географических наук, зам. директора по научной работе ПИНРО

Денисов Владимир Васильевич

доктор географических наук, профессор,

гл. н. сотр. ММБИ КНЦ РАН

Ведущая организация: Санкт-Петербургский государственный

университет (СПбГУ), кафедра

океанологии

Защита состоится "8" ноября 2011 г. в 16:30 на заседании диссертационного совета Д 002.140.01 при Мурманском морском биологическом институте Кольского научного центра Российской академии наук, по адресу: 183010 г. Мурманск, ул. Владимирская, 17.

С диссертацией можно ознакомиться в библиотеке Мурманского морского биологического института КНЦ РАН.

Автореферат разослан "8" октября 2011 г.

Ученый секретарь диссертационного совета, кандидат географических наук

Е.Э. Кириллова

І. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования

Исследование пространственной изменчивости верхнего слоя океана в различных географических районах является актуальной задачей современной океанологии. Решение этой задачи имеет важное практическое значение для развития комплексного мониторинга океана и морей с помощью дистанционных методов.

В последние десятилетия спутниковые данные о цвете океана все шире используются для оценок биопродуктивности морских акваторий, контроля их экологического состояния. При этом основным показателем является концентрация хлорофилла *а* — главного фотосинтезирующего пигмента содержащегося в каждом виде фитопланктона. Для этого широко используются эмпирические соотношения (связи) концентрации хлорофилла и спектральных характеристик восходящего из моря излучения.

Разработанные к настоящему времени универсальные алгоритмы оценки концентрации хлорофилла *а* по данным дистанционного зондирования Земли из космоса нуждаются в существенной корректировке для высокопродуктивных и мутных прибрежных, внутренних вод и эстуариев, где фитопланктон является не единственным фактором, определяющим их оптические свойства (так называемых "вод II типа").

Воды Азовского моря относят ко ІІ типу и применяемые в настоящее время алгоритмы оценки концентрации хлорофилла a (хл-а) по данным спутниковых сканеров цвета для его акватории приводят к ошибочным, иногда более чем на порядок, результатам. Начиная с конца 1990-х годов на орбите Земли регулярно появляются новые, всё более совершенные сканеры цвета океана, способные измерять большее количество спектральных характеристик излучения, международным научным сообществом разрабатываются определения биогеохимичических новые алгоритмы параметров, в том числе концентрации хлорофилл a (Кхл-а).

В этой связи актуальной является проблема выбора и региональной адаптации по данным натурных наблюдений алгоритмов расчета концентрации хлорофилла *а* в рамках программ спутникового мониторинга.

Объект и предмет исследования. Выбор в качестве объекта исследования экосистемы Азовского моря обусловлен тем, что этот водоем характеризуется высокой биологической продуктивностью вод, мелководностью, расположен в семиаридной зоне, в условиях сильного воздействия речного стока, абразионных процессов и эоловой нагрузки. Наблюдаемая здесь изменчивость концентрации хл-а в диапазоне 1-150 мг/м³ в условиях значительного градиента солености (0-17‰) и высокой мутности обеспечивает уникальные, оптически сложные, условия для апробации разрабатываемых методов (алгоритмов) оценки Кхл-а в водах ІІ типа по спутниковым снимкам. Предметом исследования является распределение концентрации хлорофилла а в Азовском море в современный период.

Степень разработанности проблемы

Исторические данные по концентрации хлорофилла *а* в экосистеме Азовского моря обрывочны, методически разнородны. Систематических исследований до настоящей работы не проводилось.

С целью выявления пространственно-временной изменчивости Кхл-а в природных водах в масштабах десятков метров (что на порядок меньше размера пиксела спутниковых сканеров цвета океана) используется метод контактных флуориметрических измерений, однако опыт его применения в продуктивных и мутных водах Азовского моря до настоящего исследования отсутствовал.

Для оценки Кхл-а в высокопродуктивных и мутных водах предложен эффективный подход, основанный на использовании спектральных характеристик излучения в красной и ближней инфракрасной областях спектра (Gitelson *et al.*, 2003; Dall'Olmo *et al.*, 2003). Однако эти алгоритмы требуют калибровки и верификации по данным натурных измерений в водоеме в возможно более широком диапазоне изменчивости условий среды.

Цель работы – выявление особенностей сезонного и пространственного распределения концентрации хлорофилла *а* в Азовском море по данным дистанционных спутниковых наблюдений и судовых спектрофотометрических и флуориметрических измерений.

Для достижения цели исследования решались следующие задачи:

- изучение распределения концентрации хл-а в Азовском море по судовым наблюдениям с применением экстрактного спектрофотометрического метода;
- проведение контактных непрерывных флуориметрических измерений концентрации хл-а и растворенного органического вещества (POB), расчёт градуировочных уравнений пересчёта интенсивности нативной флуоресценции хл-а в его концентрацию, выявление пространственновременной изменчивости Кхл-а в условиях повышенной мутности и высоких концентраций РОВ;
- верификация алгоритмов оценки Кхл-а использующих данные спутниковых сканеров цвета океана по натурным измерениям в высокопродуктивных оптически сложных водах Азовского моря;
- применение регионально адаптированных алгоритмов оценки Кхл-а по данным спектрометра MERIS для расчёта полей Кхл-а по снимкам за 2008-2009 гг., построение среднемесячных картосхем распределения Кхл-а, выявление на их основе особенностей сезонного и пространственного распределения Кхл-а в Азовском море.

Методическую базу диссертационного исследования составили:

- методика спектрофотометрического определения хлорофилла a в воде,
- контактный флуориметрический метод непрерывного измерения Кхл-а фитопланктона в воде,

- эмпирические модели дистанционной оценки Кхл-а в мутных водах по отражательной способности воды в красной и ближней инфракрасной областях спектра,
- сравнительно-географический, статистический, геоинформационный методы анализа данных.

Теоретическая база исследования основана на работах отечественных и зарубежных авторов в следующих областях:

- применение спектрофотометрических методов оценки Кхл-а работы Т.А. Richards, Т.G. Thompson, S.W. Jeffrey, G.F. Humphrey, T.R. Parsons,; J.D.H. Strickland, M.E. Виноградова, R. Ritchie и др.;
- применение контактных флуориметрических методов оценки концентрации хл-а работы С.J. Lorenzen, Г.С. Карабашева, А.А. Шавыкина, М. Ostrowska и др.;
- дистанционные методы оценки концентрации хл-а работы А.А. Гительсона, R.P. Stumpf, M.A. Tyler, H.R. Gordon, О.В. Копелевича, В.И. Буренкова, С.В Шеберстова, А. Morel, H.J. Gons и др.;
- распределение концентрации хл-а и динамики популяций фитопланктона в Азовском море работы А.Я. Алдакимовой, Е.И. Студеникиной, П.Р. Макаревича, Т.В. Фуштей, Г.В. Ковалёвой, Л.М. Сафроновой и др.

Эмпирическая база исследования представляет собой а) материалы судовых дискретных спектрофотометрических измерений Кхл-а, б) непрерывных измерений интенсивности флуоресценции хлорофилла фитопланктона и растворённого органического вещества в масштабе 20-30 м по ходу судна и временном масштабе десятков секунд на станциях, в) снимки Азовского моря, сделанные спектрометром MERIS в 2008-2009 гг., г) литературные данные.

Научная новизна результатов исследования

- 1. Впервые для Азовского моря отработана методика непрерывного судового флуориметрического измерения концентрации хл-а в воде с дискретностью менее 30 м, учитывающая влияние РОВ.
- 2. Определены ошибки спутниковых оценок концентрации хл-а для Азовского моря. Использованный для расчётов полей концентрации хл-а алгоритм позволил дать наиболее точную оценку концентрации хл-а в Азовском море.
- 3. Определены масштабы пространственной изменчивости концентрации хл-а для корректировки спутниковых оценок концентрации хл-а. На основе откорректированных спутниковых данных за 2008-2009 гг впервые получены картосхемы среднемесячных распределений концентрации хл-а в Азовском море.

Теоретическая значимость работы определяется выявленными особенностями пространственной и временной изменчивости полей хлорофилла в Азовском море

Практическая значимость результатов диссертационного исследования заключается в возможности их использования экологическими рыбохозяйственными организациями ДЛЯ биологической оценки продуктивности Азовского моря и его промыслового потенциала, в мониторинга экологического ДЛЯ его состояния, планировании экспедиционных исследований. В учебном процессе могут быть использованы как отработанные методики проведения дискретных и непрерывных измерений, так и методы расчёта концентрации хл-а по данным дистанционных и контактных измерений, результаты этих измерений.

Соответствие диссертации Паспорту научной специальности

Диссертационное исследование соответствует п. 6 «Биологические процессы в океане, их связь с абиотическими факторами среды и хозяйственной деятельностью человека, биопродуктивность районов Мирового океана» и п. 16 «Методы проведения судовых, береговых и дистанционных океанологических наблюдений, их обработки и анализа» паспорта специальности 25.00.28 — «Океанология».

Соответствие содержания диссертационной работы специальности, по которой она представляется к защите, подтверждается апробацией работы, ее научной новизной и практической полезностью.

Апробация и реализация результатов исследования

результаты исследований Основные были представлены на II конференции «Геоинформационные технологии космический мониторинг», XXXVII конференции «Математическое моделирование в проблемах рационального природопользования», XXXVI школе-семинаре «Математическое моделирование проблемах рационального В природопользования», XXV и XXVIII конференциях молодых ученых Мурманского морского биологического института, научно-практической конференции «Актуальные проблемы географии Новой России», доложены на заседании Ученого совета ММБИ КНЦ РАН.

Результаты работы были использованы при выполнении НИР в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы по теме «Изучение закономерностей продуцирования и трансформации органического вещества в экосистемах южных морей России в условиях изменения климата и антропогенной нагрузки: экспедиционные морские исследования, космический мониторинг, геоинформационные технологии, математическое моделирование».

Отработанные методики проведения дискретных и непрерывных флуориметрических измерений Кхл-а были использованы в учебном

процессе при проведении летней учебно-производственной практики студентов кафедры океанологии Южного федерального университета.

Публикации

По теме диссертации опубликовано 10 работ, в том числе 2 – в рецензируемых научных журналах из перечня ВАК, 1 в зарубежном периодическом издании, 7 в материалах конференций.

Структура диссертации

Диссертация состоит из введения, четырёх глав, выводов, списка литературы и двух приложений. Работа изложена на 125 страницах, включает 29 рисунков и 9 таблиц, включая приложение. Список литературы содержит 169 источников.

Благодарности

Автор считает необходимым поблагодарить Председателя ЮНЦ РАН академика Г.Г. Матишова и директора Института аридных зон ЮНЦ РАН чл.-корр. Д.Г. Матишова за предоставленную возможность работать над диссертацией и проводить регулярные судовые исследования, помощь, этапах работы. на всех Автор выражает благодарность научному руководителю С.В. Бердникову за неоценимую помощь, оказанную при проведении исследований и подготовке текста диссертации. Автор считает своим долгом выразить признательность А.А. Шавыкину, А.А. Гительсону, В.В. Поважному и В.Дж. Мозесу за теоретическую и практическую поддержку исследования, поблагодарить коллег из Южного научного центра РАН В.Г. Сойера, И.О. Московкину, Е.В. Ермолаеву, В.Л. Сёмина и команду НИС «Профессор Панов» за помощь в проведении экспедиционных и лабораторных исследований.

II. ОСНОВНЫЕ ПОЛОЖЕНИЯ ДИССЕРТАЦИИ, ВЫНОСИМЫЕ НА ЗАЩИТУ

- 1. Впервые построены картосхемы распределения хлорофилла *а* Азовского моря для каждого месяца, усредненные по результатам съемки 2008-2009 гг. По данным спутниковых и судовых измерений в Азовском море выявлены особенности сезонного и пространственного распределения концентрации хлорофилла *а*.
- 2. Показано, что использованный в работе двухканальный алгоритм оценки концентрации хлорофилла *а* по отражательной способности воды в красной и ближней инфракрасной областях спектра, в сравнении со стандартными алгоритмами даёт наиболее точную оценку для мутных вод Азовского моря.
- 3. Показано, что содержащиеся в рассчитанных по спутниковым данным полях концентрации хлорофилла *а* аномально высокие значения могут быть откорректированы при помощи разработанной методики, учитывающей оцененные по данным непрерывных измерений масштабы пространственной изменчивости хлорофилла.
- 4. По результатам впервые проведённых на акватории Азовского моря непрерывных флуориметрических измерений концентрации хлорофилла *а* с дискретностью менее 30 м и 6 с установлено, что в Таганрогском заливе наблюдается сильная временная и пространственная ее изменчивость весной, летом и осенью.

III. СОДЕРЖАНИЕ РАБОТЫ

Во введении формулируются цели и задачи исследования, обосновывается актуальность темы. Показана их научная новизна и практическая ценность, формулируются положения, выносимые на защиту.

В первой главе приведена океанографическая характеристика объекта исследования, описаны использованные материалы и методы определения содержания хлорофилла в воде: контактные спектрофотометрические и непрерывные флуориметрические, дистанционные для мутных вод.

Для описания Азовского моря использованы сведения, опубликованные в справочниках по гидрометеорологическому режиму Азовского моря 1962, 1986 и 1991гг., а также материалы из диссертации Ю.М. Гаргопы (2003) и монографий, опубликованных в Южном научном центре РАН и Мурманском морском биологическом институте КНЦ РАН. Приведены общегеографические и гидрологические характеристики и особенности, сезонные климатические изменения на акватории, особенности ледообразования; описаны преобладающие ветры, характерные течения, факторы вызывающие колебания уровня моря, температурный режим, речной сток.

В подразделе «Спектрофотометрические методы определения Кхл-а в воде» приведено описание методов отбора, хранения и обработки проб для последующего спектрофотометрического анализа, их преимущества и недостатки. Рассмотрены различные используемые в мировой практике

уравнения и наборы коэффициентов для расчёта Кхл-а по спектрофотометрическим данным. Обосновано использование в данном исследовании трихроматического метода без подкисления, в соответствии с ГОСТ 17.1.04.02.-90, коэффициенты для которого опубликованы S.W. Jeffrey и G.F. Humphrey в 1975г., широко применяются в зарубежной практике и позволяют давать достаточно точные оценки Кхл-а по результатам недавней работы R. Ritchie 2008г.

В следующем подразделе дан обзор применяемых контактных флуориметрических методов определения Кхл-а в воде: дискретных и непрерывных по времени и в пространстве, по вертикали и горизонтали, при помощи одно-, двухканальных и мультиспектральных флуориметров, установленных на различные типы носителей. Подробно рассмотрены основные факторы, накладывающие ограничения на применение способа горизонтальных непрерывных измерений интенсивности флуоресценции хлорофилла *in vivo* путём прокачки воды через флуориметр по ходу судна, который использовали в данной работе: фон водной системы (флуоресценция РОВ), изменчивость внешнего светового облучения, видового состава фитопланктона, дисперсность флуоресцирующих частиц. Приведена таблица, флуориметрического основные особенности обобщающая содержащая оценки погрешности метода до и после учёта влияющих факторов, рассмотрены способы преодоления перечисленных ограничений и их реализация в ходе данного исследования.

В разделе «Судовые экспедиционные исследования» описаны сроки и районы проведения двадцати четырёх экспедиционных исследований в 2008-2010гг., количество отобранных проб для определения Кхл-а и методика их отбора. В четырёх экспедициях использовали гидрологофлуориметрический комплекс, приведено его описание. Описана модель измерения интенсивности нативной флуоресценции хлорофилла (ИНФХ) с учётом содержания в воде растворённого органического вещества при помощи двухканального флуориметра «Квант-7».

В последнем разделе главы приведён обзор методов расчёта концентрации хлорофилла а по данным дистанционного зондирования. Описаны различия оптических свойств океанических вод I типа и мутных, богатых органическим веществом вод II типа. Отмечено, что использующие оптические характеристики воды в синей и зелёной областях спектра алгоритмы, применяемые для дистанционной оценки Кхл-а в океанических водах, неэффективны во многих внутренних и прибрежных водах. В дальнейшем приводится история развития моделей оценки Кхл-а в водах И типа, указываются их особенности и недостатки. Приведены ссылки на которых мутных успешно работы, ДЛЯ водоёмов использованные в данном исследовании двух и трёхканальная модели дистанционной оценки Кхл-а по отражательной способности воды в красной и ближней инфракрасной областях спектра. Отмечено, что дальнейшие модификации этих моделей не внесли улучшений в точность определения Кхл-а.

Вторая глава посвящена проведению измерений концентрации хлорофилла *а* флуориметрическим методом в Таганрогском заливе на примере экспедиции, проведённой 16-19 июня 2008 г.

На борту НИС «Профессор Панов» использовали гидрологофлуориметрический комплекс (рис. 1), предназначенный для параллельных измерений ИНФХ, интенсивности флуоресценции растворенного органического вещества (ИФР), солёности и температуры воды, облучённости поверхности моря, навигационных данных.

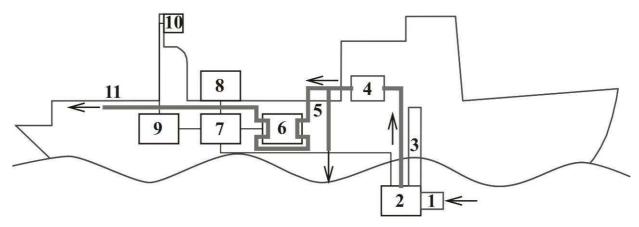


Рисунок 1 - Схема установки гидролого-флуориметрического комплекса на борту судна:

1 — зонд горизонтального профилирования ЗГП-2004, 2 — заборный клапан системы прокачки, 3 — штанга крепления заборного устройства и зонда, 4 — насос, 5 — подающие и отводящие шланги системы прокачки, 6 — двухканальный флуориметр "Квант-7", 7 — компьютер, 8 — GPS Garmin GPSMap 60, 9 — квантометр Li-Cor LI190-SA; 10 — датчик квантометра, 11 — место отбора проб из системы прокачки. Стрелками указано направление движения забортной воды

Все приборы комплекса были подключены к ЭВМ, запись их показаний в компьютер производится с интервалом 4 или 6 секунд, что соответствует пространственной дискретности примерно в 20 м. Вода во флуориметр подавалась насосной системой прокачки, забор воды происходил на глубине 70 см. Для определения Кхл-а экстрактным спектрофотометрическим методом и последующего сопоставления с ИНФХ воду отбирали после прохождения флуориметра.

Принятая модель флуориметрических измерений может быть представлена следующим образом:

$$F1 = F_{XII}^{[XII]} + S_{IB}^{[XII]} + F_{POB}^{[XII]}$$
 (1)

$$F2 = S_{AB}^{[POB]} + F_{POB}^{[POB]} \tag{2}$$

где верхние индексы $[X\Pi]$ и [POB] обозначают каналы, настроенные на измерение ИНФХ и ИФР соответственно; нижние индексы обозначают измеряемые характеристики; F1, F2 — показания флуориметра по первому и

второму каналу соответственно; $F_{\chi \Pi}^{[X\Pi]} - \text{ИН}\Phi X$; $S_{\mathcal{A}\mathcal{B}}^{[X\Pi]}$, $S_{\mathcal{A}\mathcal{B}}^{[POB]}$ — интенсивность света, рассеянного дистиллированной водой по соответствующему каналу; $F_{POB}^{[X\Pi]}$, $F_{POB}^{[POB]}$ — ИФР соответственно по каналам измерения хлорофилла и РОВ.

В показания флуориметра по первому каналу (F1), помимо ИНФХ некоторый вклад вносит ИФР. Предполагается, что соотношение различных растворенных органических веществ остается примерно постоянным и по измерениям ИФР по каналу F2 можно рассчитать ИФР для первого канала и тем самым учесть вклад РОВ в сигнал. Для этого измеряли F1 и F2 фильтрованной морской воды в проточных кюветах. Для учета суммарного рассеяние света измеряли F1 и F2 дистиллированной воды. В итоге получены следующие формулы для расчета ИНФХ и ИФ РОВ:

$$F_{XII}^{[XII]} = (F1 - 0.273) - 0.267 \cdot (F2 - 0.053), \tag{3}$$

$$F_{POB}^{[POB]} = F2 - 0.053. (4)$$

Для определения Кхл-а по измеренной флуориметром ИНФХ рассчитано градуировочное уравнение (рис.2), связывающее концентрацию хлорофилла a в морской воде с показаниями флуориметра через формулу (3):

$$K_{XJ} - a = (1,177 \cdot F_{XJ}^{[XJ]} + 4,147) \cdot F_{XJ}^{[XJ]}, (n = 19, r^2 = 0.949).$$
 (5)

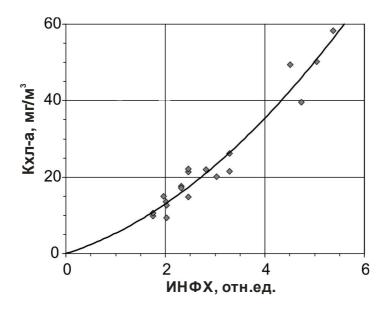


Рисунок 2 - Градуировочное уравнение

Анализ полученных данных показал, что влиянием света на связь между ИНФХ и Кхл-а можно пренебречь, т.к. коэффициент корреляции r между облученностью и отношением ИНФХ / Кхл-а равен 0.25, коэффициент детерминации $r^2 = 0.063$ и значимо не отличаются от нуля. Дисперсность частиц учитывалась усреднением ряда отсчетов флуориметра.

Среднеквадратичное отклонение между измеренными и рассчитанными значениями Кхл-а составило 3.3 мг/м^3 , в остальных рейсах не превысило 5 мг/м^3 . Эти различия практически такие же, как и между измерениями Кхл-а спектрофотометрическим методом на фильтрах, отобранных из одних и тех же проб.

В третьей главе рассматривается процедура построения полей распределения Кхл-а в Азовском море, использованные алгоритмы, данные и разработанная методика корректировки выбросов.

Использованы данные спектрометра MERIS (спектральная яркость восходящего излучения на верхней границе атмосферы): они позволяют охватить всю акваторию Азовского моря, обладают достаточным (высоким для сканеров цвета) пространственным разрешением (примерно 300 м) и содержат информацию по излучению на длине волны около 708 нм. Приводится описание двух доступных для этих данных процедур атмосферной коррекции, позволяющих производить расчёт коэффициентов спектральной яркости (КСЯ) – значений отражательной способности воды в 16 измеряемых спектрометром диапазонах длин волн (каждому диапазону соответствует канал). Показано, что приемлемые результаты даёт только процедура *Bright pixel*, использованная в дальнейшем.

Для оценки Кхл-а по КСЯ применены трёх- и двухканальные модели, описанные в последнем разделе первой главы в форме следующих алгоритмов:

$$KX \propto [R_{rs}^{-1}(665) - R_{rs}^{-1}(708)] \times R_{rs}(753),$$
 (6)

$$KX \propto R_{rs}^{-1}(665) \times R_{rs}(708),$$
 (7)

где $R_{rs}(\lambda)$ - значение КСЯ на длине волны λ .

Для калибровки алгоритмов использованы спектрофотометрические измерения Кхл-а в апреле-октябре 2008г, для верификации – измерения в марте 2009г. Приведены критерии отбора станций, для 26 отобранных станций указаны минимальное, максимальное, среднее значение и медиана Кхл-а: 0.63, 65.51, 26.97 и 24.35 мг/м³.

По результатам калибровки установлена тесная линейная связь между рассчитанными по обоим алгоритмам КСЯ и измеренными *in situ* Кхл-а (рис. 3). Коэффициент детерминации (r^2) в обоих случаях превысил 0.95.

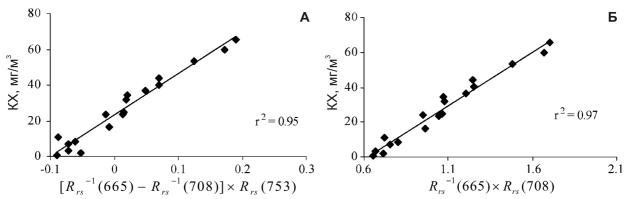


Рисунок 3 — Калибровка трёхканального (A) и двухканального (Б) алгоритмов для БИК и красной областей спектра по данным MERIS, прошедшим процедуру атмосферной коррекции *Bright pixel*.

Методом наименьших квадратов рассчитаны уравнения пересчёта КСЯ в Кхл-а:

$$KX = 232.29[[R_{rs}^{-1}(665) - R_{rs}^{-1}(708)] \times R_{rs}(753)] + 23.174,$$
(8)

$$KX = 61.324[R_{rs}^{-1}(665) \times R_{rs}(708)] - 37.94.$$
(9)

Верификацию алгоритмов выполняли в два этапа:

- а) по уравнениям 3,4 оценивали Кхл-а,
- б) сравнивали рассчитанные и измеренные *in situ* Кхл-а.

Среднеквадратичное отклонение (RMSE) для полученных при помощи трёхканального алгоритма значений составило $5.02 \, \text{мг/м}^3$ (рис. 4a), при помощи двухканального $-3.65 \, \text{мг/m}^3$ (рис. 4б).

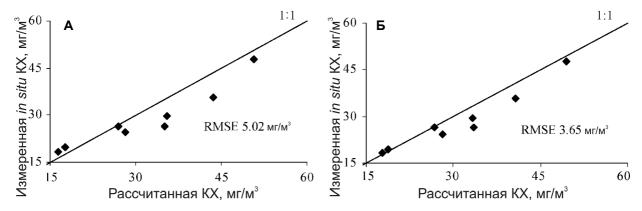


Рисунок 4 — Верификация алгоритмов: зависимость между Кхл-а по трёхканальному (A) и двухканальному (Б) алгоритмам и Кхл-а *in situ*.

Сделан вывод, что трёхканальный алгоритм оказался более чувствительным к неопределённостям и неоднородному спектральному воздействию процедуры атмосферной коррекции из-за использования в качестве множителя КСЯ на 753нм: соотношение сигнал/шум с ростом длины волны ниже и диапазон шире. Этим объясняется больший разброс

точек на рисунке 3 для значений Кхл-а ниже $10 \,\mathrm{mr/m}^3$ и большее среднеквадратичное отклонение для Кхл-а на рисунке 4а.

Приведены результаты сравнения оценок Кхл-а по калиброванным алгоритмам (8, 9) с несколькими другими широко используемыми алгоритмами и их описания. Сравнивали станции, использованные и для калибровки и верификации. Среднеквадратичная ошибка двухканального алгоритма составила 3.58 мг/м³ и 4.54 мг/м³ для трёхканального. Сделаны выводы, что оба алгоритма позволили дать более точную оценку Кхл-а в Азовском море по спутниковым данным (рис.5), двухканальный алгоритм просто устроен, менее подвержен зависящим от длины волны атмосферным эффектам, полной мере учитывает обусловленный хлорофиллом а в красной области спектра минимум отражательной способности и пик отражательной способности в ближней инфракрасной области.

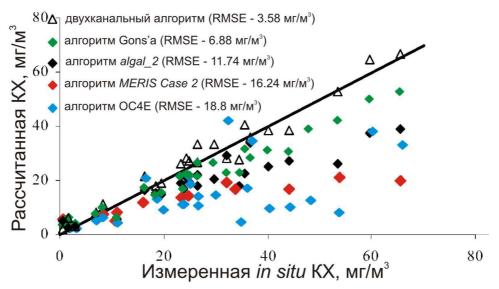


Рисунок 5 – Сравнение алгоритмов оценки Кхл-а по данным MERIS (RMSE – среднеквадратичная ошибка)

Для **расчета полей Кхл-а в Азовском море** использован более точный двухканальный алгоритм.

Расчёт проводили в 6 этапов:

- 1. Применяли процедуру атмосферной коррекции *Bright pixel* для расчёта КСЯ по всем каналам снимка;
- 2. Исключали те пикселы, для которых процедура атмосферной коррекции произвела отрицательные значения КСЯ на длине волны 490нм:
- 3. Исключали пикселы, распознанные стандартными алгоритмами как суша, облака, лёд или дымка;
- 4. Для оставшихся пикселов вычисляли Кхл-а по формуле (9).
- 5. Исключали пикселы, в которых рассчитанные Кхл-а оказались отрицательными;

6. Значения Кхл-а, большие 150 мг/м³, заменяли на 150 (максимальную измеренную спектрофотометрическим методом за 2008-2011гг. величину).

Всего обработано 76 спутниковых снимков, сделанных сканером MERIS за период 2008-2009 гг. Отмечено наличие выбросов в большую сторону на полученных полях распределения Кхл-а и неудовлетворительный результат работы стандартного алгоритма фильтрации: изменён характер распределения встречаемости значений Кхл-а на бимодальное и сужение их диапазона в сторону более низких значений (рис.6). Для учёта таких выбросов разработан и реализован программно алгоритм.

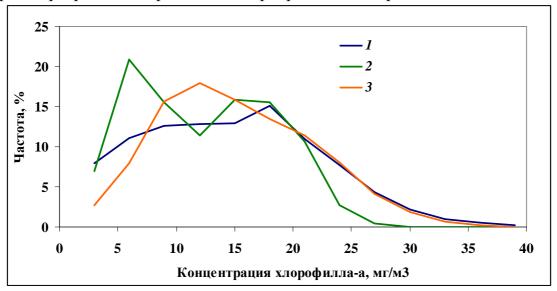


Рисунок 6 - Пример результатов фильтрации поля Кхл-а: распределение встречаемых Кхл-а до фильтрации (1) и после с применением стандартного алгоритма Morphology Opening Filter(2) и разработанного(3).

Принцип действия разработанного и реализованного программно алгоритма заключается в поочерёдном сравнении значения Кхл-а для текущего пиксела снимка со средним для окружающих его пикселов, находящихся в «окне» заданного размера. При этом количество окружающих пикселов, содержащих корректные значения Кхл-а, не должно быть меньше $(N^2-1)/2$ для окна размером $N\times N$ пикселов. Если соотношение превышает определённую величину, пиксел помечается как выброс. Процедура выявления выбросов выполняется заданное количество выполняется замена выбросов на значение Кхл-а, среднее для окружающих выброс пикселов (интерполяция), их количество не должно быть меньше $(N^2-1)/4$.

Непрерывные измерения Кхл-а в Таганрогском заливе флуориметрическим методом позволили оценить изменчивость этой характеристики и определить критерий для выявления выбросов. По измеренным вдоль хода судна значениям Кхл-а была выполнена имитация отношения Кхл-а в двух соседних пикселах путём усреднения значений на отрезках длиной в размер пиксела. В 99% сравнений отношение не

превысило 50%, это значение и было использовано в качестве критерия. Эффективный размер окна составил 5×5 пикселов (что соответствует наименьшему размеру наблюдавшихся пятен Кхл-а). Абсолютное большинство выбросов выявляется на второй итерации. Алгоритм применили ко всем 76 рассчитанным полям Кхл-а.

Сопоставление полученных распределений Кхл-а с аналогичными данными, публикуемыми NASA и рассчитанными на основе данных спектрорадиометра MODIS по алгоритму ОС3 показало, что в областях высоких концентраций различия составляют 20-50 и более мг/м³.

Приведены **карты среднемесячного распределения Кхл-а** (рис.7), построенные по рассчитанным полям этой характеристики. По равномерной сетке с шагом 10 км выбирали все значения Кхл-а, рассчитанные для очередного месяца для каждой её ячейки. По этим значениям вычисляли среднее арифметическое. Затем по сетке, содержащей среднемесячные значения Кхл-а, получали поле распределения Кхл-а, используя так называемый метод «Естественная окрестность», в основу которого положен алгоритм триангуляции Делоне.

Четвёртая глава посвящена выявленным закономерностям пространственного распределения и сезонной динамики концентрации хлорофилла *а* фитопланктона в Азовском море и сравнению результатов с историческими данными.

В первом разделе приведены данные по вертикальному распределению Кхл-а в 2008-2010гг. Для абсолютного большинства станций изменчивость Кхл-а по глубине не превысила погрешность метода измерения, что соответствует сложившимся представлениям о вертикальном распределении фитопланктона в Азовском море. Наибольшие градиенты объясняются развитием синезеленых водорослей в поверхностном слое Таганрогского залива. Сделан вывод, что измерения Кхл-а в поверхностном горизонте достоверно отражают максимальные встречаемые значениях по всей водной толще.

В следующих двух разделах проведён анализ пространственновременной изменчивости Кхл-а в Таганрогском заливе по данным непрерывных флуориметрических измерений в 2008-2010гг. Измеренные вдоль хода судна значения колебались в широких диапазонах от 10-20 до 70-90 мг/м³ в марте, июне и ноябре. Весной и осенью разброс Кхл-а составил около 50, а летом - 85 мг/м³ (рис. 8). Выявлена значительная пространственная неоднородность Кхл-а, «пятнистость» при спокойной ветровой обстановке. В условиях сильного волнения водные массы мелководного залива хорошо перемешиваются и картина сглаживается. Размер зон высокого содержания хл-а изменялся от нескольких километров до полутора десятков. Наибольшая изменчивость наблюдалась в кутовой части залива - зоне смешения речных и морских вод.

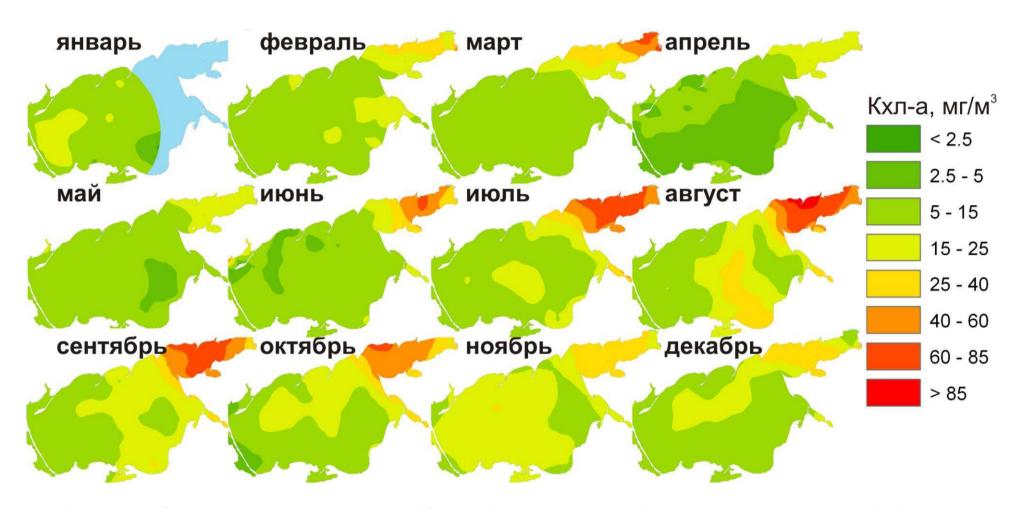


Рисунок 7— Среднемесячные распределения Кхл-а в Азовском море в 2008-2009 гг. по результатам обработки спутниковых снимков, сделанных спектрометром MERIS

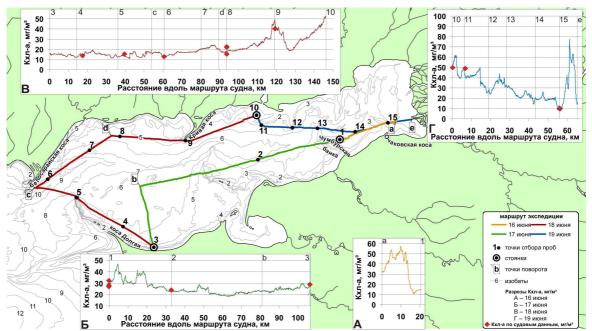


Рисунок 8 – Маршрут экспедиции в июне 2008г. и результаты непрерывных и дискретных измерений Кхл-а

(цифры на верхней оси графиков соответствуют номерам станций)

Временная изменчивость Кхл-а в динамичных водах залива также велика и по результатам непрерывных измерений на станциях может составлять 20-40% за 1.5-3 часа, в абсолютных значениях - 20 мг/м³. Дискретные спектрофотометрические измерения также показали, что в местах активной циркуляции вод Кхл-а меняется быстро и в широком диапазоне (рис 9).

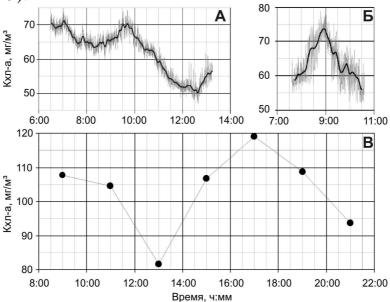
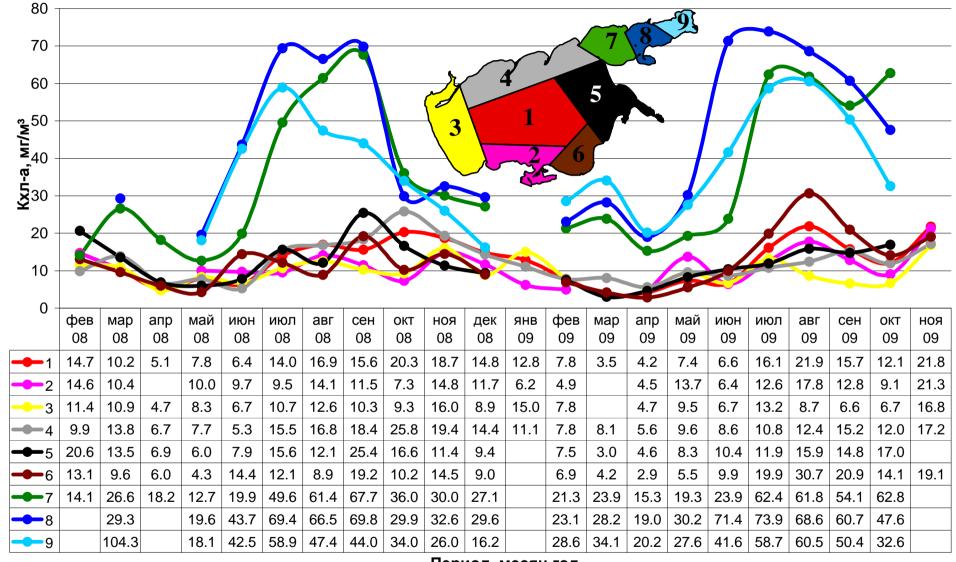


Рисунок 9 - Результаты измерений Кхл-а в устье Миусского лимана


А – непрерывным флуориметрическим методом 19 июня 2008 г,

Б – непрерывным флуориметрическим методом 19 марта 2009 г,

В - 2 дискретным спектрофотометрическим 20 июня 2010 г.

В четвёртом и пятом разделах по рассчитанным полям Кхл-а за 2008-2009гг. выявлены особенности сезонной динамики и пространственного распределения, проведено сравнение полученных данных опубликованными ранее. Показано, что в начавшемся с суровой зимы 2008г. и умеренном 2009 можно выделить два периода увеличения и следующих за спада содержания хл-а в собственно море и Таганрогском заливе (рис. 10), что согласуется с описанной в литературе сменой «биологических сезонов», обусловленных в Азовском море интенсивностью прогрева водной толщи. Первый пик соответствует массовому развитию диатомового комплекса водорослей весной. В 2008г. он приходится на февраль в собственно море и на март в заливе, развитие водорослей заканчивается в море к апрелю, а в заливе сходит на нет в мае. В тёплую зиму 2009г. ледостава в море не происходило и неограниченные в свете и тепле водоросли развивались, начиная с конца предыдущей осени до марта без вспышки, характерной периоду вскрытия льда весной. В заливе же лёд вскрылся в конце января и максимум Кхл-а наблюдался в марте. Конец весеннего развития планктона наступил в 2008г. в мае, а в 2009г. на месяц раньше из-за более благоприятных условий. Также на месяц смещён летнееосенний максимум: в море пик наблюдался в сентябре (в октябре в северном и центральном районах моря) в 2008г. и на месяц раньше в 2009г.; для залива смещение менее выражено - пик пришёлся на июль-сентябрь в 2008г. и на июнь-сентябрь в следующем. Увеличение Кхл-а в южном районе моря в мае 2009г. связано, видимо, с проникшими черноморскими видами. Средние величины Кхл-а в Таганрогском на протяжении двух лет были выше таковых в море, даже их когда снижение совпадало по времени с увеличением Кхл-а в море; в остальные периоды средние концентрации по заливу превышали морские в несколько раз. Наибольшие значения Кхл-а для залива отмечены в его центральной части в оба года, для моря – в северной и восточной в 2008 и в устье Кубани в 2009г. Летне-осенние максимумы Кхл-а превосходят в несколько раз весенние по величине и в заливе и собственно море, что расходится с общепринятыми представлениями о развитии фитопланктона в море. Ранее также считалось, что «процессы жизнедеятельности всех групп и видов водорослей затухают в преддверии биологической зимы... Зима характеризуется не только низкой биомассой фитопланктона, но и весьма бедным качественным составом водорослей» (Студеникина и др., 1999), но это представление было опровергнуто в последние годы результатами ледокольных исследований (Ковалева, 2008) и подтверждается в данной работе как по данным спутниковых, так и судовых оценок Кхл-а (рис. 10, табл. 2, табл. 3).

Современные средние значения Кхл-а соответствуют уровню 1960-61гг. и 1983г. в Таганрогском заливе и превосходят оценки, полученные в 1993-1997 гг (табл. 1), что соответствует опубликованным величинам биомассы фитопланктона в эти годы. Для моря полученные цифры больше всех опубликованных ранее, что может быть объяснено нерепрезентативностью дискретных оценок средних величин на больших площадях.

Период, месяц год

Рисунок 10 – Сезонная изменчивость Кхл-а по районам Азовского моря в 2008-2009 гг. по спутниковым данным

Таблица 1 Таблица 2

Содержание хлорофилла в водной толще Азовского моря, мг/м^3 по (Студеникина и др., 1998)

Годы	Весна	Лето	Осень				
Собственно море							
1993	1.79 (0.63-9.03)	3.37 (0.7-8.0)	5.44(1.94-10.0)				
1995	_		3.97 (0.85-12.51)				
1996		3.18 (0.6-12.25)					
1997	2.15(0.07-4.13)	0.82 (0.57-1.66)	3.83(1.02-10.12)				
Таганрогский залив							
1993	25.1 (4.34-47.2)	6.5 (3.2-12.8)	5.9 (1.83-9.55)				
1995			7.79 (2.65-24.5)				
1996		10.81 (2.61-20.18)	0.91 (0.22-1.77)				
1997	13.92 (5.9-24.57)	65.4(35.8-116.56)	18.53 (1.8-28.27)				

Кхл-а в водной толще Азовского моря по данным спектрофотометрических измерений, мг/м^3

Годы	Зима	Весна	Лето	Осень				
	Собственно море							
2008			_	8.6±6.2(1.2-21.6)				
2009	5.7±0.8(4.5-7.2)	2.9±1.7(1.1-7.4)	_	_				
2010	_	_	6.6±4.7(0.3-17.1)	10.7±5.0(4.3-22.9)				
Таганрогский залив								
2008	_	_	30.6±16.4(8.3-63.8)	37.0±14.1(10.4-60.7)				
2009	34.8±19.7(14.6-73.4)	22.5±9.0(9.4-44.7)	38.2±21.2(11.0-71.3)	55.2±20.7(7.8-96.1)				
2010	21.6±14.9(10.4-61.4)	11.2±3.9(6.9-16.7)	73.3±26.6(18.0-149.5)	48.0±13.1(25.9-73.5)				

Таблица 3

Примечание. Указаны средние ± стандартное отклонение, в скобках - минимальные и максимальные значения

Средняя Кхл-а в приповерхностном слое Азовского моря, мг/м³ по данным сканера MERIS

Годы	Зима	Весна	Лето	Осень		
Собственно море						
2008	13.1	8.5	11.5	17.1		
2009	9.7	6.2	14.7	14.8		
Таганрогский залив						
2008	23.3	20.0	44.0	48.0		
2009	23.2	20.3	59.2	53.9		

IV. ВЫВОДЫ И РЕКОМЕНДАЦИИ

- В оптически сложных водах Азовского моря возможно добиться точности непрерывного судового флуориметрического измерения с учётом влияния РОВ в 5 мг/м³ и выше.
- В Таганрогском заливе наблюдается сильная временная и пространственная изменчивость Кхл-а с весны до осени. Наблюдаются пятна повышенного содержания концентрации хлорофилла размером от нескольких километров до полутора десятков, значения Кхл-а изменяются от единиц до 150 мг/м³. За несколько часов Кхл-а может изменяться на 30–40%, что составляет десятки мг/м³.
- На основании выявленной сильной временной изменчивости Кхл-а для сопоставления судовых и спутниковых данных необходим специальный подход: сравнение можно проводить при максимально синхронных их измерениях в районах, специально выбранных для этих целей.
- Из шести рассмотренных алгоритмов оценки Кхл-а по данным спектрометра MERIS для мутных вод Азовского моря наименьшую ошибку производил двухканальный алгоритм, использующий коэффициенты спектральной яркости воды в красной и ближней инфракрасной областях спектра.
- К рассчитанным полям Кхл-а необходимо применять процедуру фильтрации выбросов, обусловленных, по-видимому, неопределённостями процедуры атмосферной коррекции спутниковых данных. Параметризовать такую процедуру возможно проанализировав непрерывные судовые флуориметрические измерения.
- Наибольшие концентрации Кхл-а сосредоточены в Таганрогском заливе в летнее-осенний период. Первый пик развития фитопланктона приходится на февраль-март на всей акватории Азовского моря, второй в собственно море происходит в разных районах между августом и октябрём, в Таганрогском заливе - в июне-сентябре. Величина и летнее-осеннего продолжительность максимума Кхл-а весеннего на всей акватории. Начало и конец весеннего максимума обстановки ледовой температурных зависят И предшествующей зимой. Зимой развитие развитие фитопланктона не прекращается и может закончится, не произведя вспышки весной.

V. СПИСОК РАБОТ, В КОТОРЫХ ОПУБЛИКОВАНЫ ОСНОВНЫЕ ПОЛОЖЕНИЯ ДИССЕРТАЦИИ

Работы, опубликованные в рекомендованных ВАК изданиях:

- 1. Шавыкин, А.А. Непрерывные измерения океанологических параметров в приповерхностном слое Таганрогского залива. 1. Определение хлорофилла а флуориметрическим методом /А.А. Шавыкин, С.В. Бердников, В.В. Сапрыгин, Р.Е. Вербицкий // Вестник Южного научного центра. − 2010. − Т.6., №3. С. 37-46.
- 2. Матишов, Г.Г. Разработка инструментария для комплексной оценки воздействия на экосистему Северного Каспия при освоении морских месторождений Γ . Γ . Матишов, C.B. нефтегазовых Бердников, О.В. Степаньян. O.E. A.A. Курапов, Архипова, B.B. Сорокина, А.Е. Цыганкова. Л.В. Дашкевич, B.B. Поважный. C.B. Бирюкова, В.В. Кулыгин, В.В. Сапрыгин, Н.А. Яицкая // Защита окружающей среды в нефтегазовом комплексе. - 2009. - № 1. - С. 5-20.

Другие опубликованные работы:

- 3. Gitelson, A. Estimation of Chlorophyll-a Concentration in Productive Turbid Waters Using Hyperspectral Imager for the Coastal Ocean—The Azov Sea Case Study (Оценка концентрации хлорофилла *а* в продуктивных мутных водах Азовского моря при помощи Гиперспектрального сканирующего радиометра для прибрежных зон) / A.A. Gitelson , B.C. Gao, R.R. Li, S. Berdnikov, **V. Saprygin** // Environ. Res. Lett. 2011. Vol. 6, 024023 (6pp), doi:10.1088/1748-9326/6/2/024023.
- 4. Бердников, С.В. Оценка цветности воды в Азовском море с применением сканеров цвета MERIS / С.В. Бердников, **В.В. Сапрыгин** // Интегрированное управление ресурсами и безопасностью в бассейне Азовского моря: Монография. Одесса: ИПРЭЭ НАН Украины, 2010. С. 617-624.
- 5. Иванов, С.А. Вертикальное и горизонтальное распределение гидролого-флуориметрических характеристик в водах Таганрогского залива в июне 2008 г. / С.А. Иванов, **В.В. Сапрыгин** // Материалы XXVIII конференции молодых ученых Мурманского морского биологического института, Россия, Мурманск, май 2010 г. Мурманск: ММБИ КНЦ РАН, 2010. С. 97-103.
- 6. **Сапрыгин, В.В.** Применение ДДЗ для определения концентрации хлорофилла-А фитопланктона / **В.В.** Сапрыгин, С.В. Бердников, В.В. Поважный // II конференция «Геоинформационные технологии и космический мониторинг»: матер. конф., Россия, Дюрсо, 9-11 сентября 2009 г. Ростов-на-Дону: Изд-во «СКНЦ ВШ», 2009. С. 101–102.
- 7. **Сапрыгин, В.В.** Измерения концентрации и флуоресценции хлорофилла-А в водах Таганрогского залива / В.В. Сапрыгин // Экология. Экономика. Информатика XXXVII конференция «Математическое моделирование проблемах рационального природопользования»: матер.

- конф., Россия, Дюрсо. 7-12 сентября 2009 г. Ростов-на-Дону: Изд-во СКНЦ ВШ, 2009. С. 177–178.
- 8. **Сапрыгин, В.В.** Применение гидролого-флуориметрического комплекса для изучения растворённого органического вещества (РОВ) Таганрогского залива / **В.В. Сапрыгин**, С.В. Бердников, Р.Е. Вербицкий, А.А. Шавыкин // Материалы XXXVI школы-семинара «Математическое моделирование в проблемах рационального природопользования», Россия, Дюрсо, 8-14 сентября 2008 г. Ростов-на-Дону: Изд-во ЦВВР, 2008. С. 114-115.
- 9. Кропянко, Л.В. Применение современных информационных технологий изучения хозяйственной ДЛЯ видов деятельности антропогенного давления на акватории южных морей / Л.В. Кропянко, научно-практической В.В. Сапрыгин // Материалы конференции «Актуальные проблемы географии Новой России», Россия, Санкт-Петербург, 4 апреля 2008. - С. 300-302.
- 10. Духно, Г.Н. Оценка уязвимости акватории Баренцева моря к нефтяному загрязнению / Г.Н. Духно, О.П. Калинка, **В.В. Сапрыгин** // Материалы XXV юбилейной конференции молодых учёных Мурманского морского биологического института, Россия, Мурманск, май 2007 г. Мурманск: ММБИ КНЦ РАН, 2007. С. 63-71.

Сапрыгин Владислав Валерьевич Изучение распределения хлорофилла *а* в Азовском море по данным дистанционного зондирования Земли из космоса и результатам судовых измерений Автореф. дисс. на соискание учёной степени кандидата географических наук

Печать цифровая. Бумага офсетная. Гарнитура «Таймс».
Формат 60х84/16. Объем 1,0 уч.-изд.-л.
Заказ № 2362. Тираж 100 экз.
Отпечатано в КМЦ «КОП**И**ЦЕНТР»
344006, г. Ростов-на-Дону, ул. Суворова, 19, тел. 247-34-88