ФИЗИКА

УДК 537.226.4: 519.673 DOI: 10.7868/S25000640180405

НОВЫЙ ПОДХОД К ОПИСАНИЮ ДИЭЛЕКТРИЧЕСКИХ СПЕКТРОВ НА ОСНОВЕ МОДЕЛИ ГАВРИЛЯКА – НЕГАМИ

© 2018 г. Ю.И. Юрасов^{1, 2}, А.В. Назаренко¹

Аннотация. Проведены исследования частотных зависимостей диэлектрической проницаемости $\varepsilon'/\varepsilon_0(f)$ и $\varepsilon''/\varepsilon_0(f)$, тангенса угла потерь tg $\delta(f)$ и электропроводности $\gamma'(f)$ и $\gamma''(f)$ свинецсодержащих (ЦТС при x = 0.50) и бессвинцовых керамик (KNN) в широком термочастотном интервале (T = 20-700 °C; $f = 25-10^6$ Гц). В твердых растворах системы ЦТС при x = 0,50 до сегнетоэлектрического фазового перехода формируются максимумы є'/ɛ₀(f), обусловленные «сильной» релаксацией. В бессвинцовых керамиках KNN образование аналогичных дополнительных экстремумов, но уже в пароэлектрической области (при $T > T_c$) вызвано ростом сквозной проводимости, дающей значительный вклад в $\varepsilon''/\varepsilon_{0}(T)$ и, соответственно, в tg $\delta(T)$. Для действительной и мнимой частей комплексной электропроводимости γ^* введены сингулярный и дополнительный члены соответственно. С учетом этих членов создана новая теоретическая модель описания кривых зависимостей $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$, $tg\delta(f)$, $\gamma'(f), \gamma''(f),$ основанная на модели Гавриляка – Негами, записанной для комплексной электропроводимости у*. Приведены результаты сравнения описания диэлектрических спектров с использованием двух моделей Гавриляка – Негами: для комплексной диэлектрической проницаемости є^{*} и для комплексной электропроводности у*. Использование нового подхода позволяет полностью аппроксимировать экспериментальный набор изучаемых диэлектрических спектров, включая вклад сквозной проводимости в низкочастотную область спектров. При этом описание с помощью модели Гавриляка – Негами для комплексной диэлектрической проницаемости є* дает сильные расхождения как в низкочастотной, так и высокочастотной области спектра. Полученные выражения позволяют проводить аппроксимацию экспериментальных спектров с высокой точностью в диапазоне частот от 1 до 10⁸ Гц.

Ключевые слова: сегнетоэлектрик, бессвинцовая пьезокерамика, релаксация, комплексная электропроводность, датчики, ниобат калия, ЦТС.

A NEW APPROACH TO DIELECTRIC SPECTRA DESCRIPTION BASED ON THE HAVRILIAK-NEGAMI MODEL

Yu.I. Yurasov^{1, 2}, A.V. Nazarenko¹

Abstract. The studies of frequency dependences of permittivity $\varepsilon'/\varepsilon_0(f)$ and $\varepsilon''/\varepsilon_0(f)$, loss tangent $tg\delta(f)$ and conductivity $\gamma'(f)$ and $\gamma''(f)$ of lead-containing (PZT at x = 0.50) and lead-free ceramics (KNN) in a wide thermo-frequency range (T = 20-700 °C, $f = 25-10^6$ Hz) are carried out in this paper. It is shown that before the ferroelectric phase transition the maxima of $\varepsilon'/\varepsilon_0(f)$ are formed in solid solutions of PZT systems at x = 0.50 due to "strong" relaxation. The formation of similar additional extrema, but in the paraelectric phase (at $T > T_c$), in the lead-free KNN ceramics is caused by reach-through conductivity increase, which makes a significant contribution to $\varepsilon''/\varepsilon_0(T)$ and also $tg\delta(T)$. Singular and additional terms are introduced in the imaginary and real parts of the complex conductivity γ^* . To describe $\varepsilon'/\varepsilon_0(f)$, $tg\delta(f)$, $\gamma'(f)$, $\gamma''(f)$ dependencies the new theoretical model based on complex conductivity γ^* Havriliak-Negami formula was created with these terms. The results of a comparison of the dielectric spectra description are presented using two Havriliak-

¹ Федеральный исследовательский центр Южный научный центр РАН (Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation), Российская Федерация, 344006, г. Ростов-на-Дону, пр. Чехова, 41, e-mail: yucomp@ya.ru

² Научно-исследовательский институт физики Южного федерального университета (Research Institute of Physics of Southern Federal University, Rostov-on-Don, Russian Federation), Российская Федерация, 344090, г. Ростов-на-Дону, 344090, пр. Стачки, 194

Negami models: for the complex permittivity ε^* and for the complex conductivity γ^* . It is shown that complete approximation of experimental dielectric spectra including reach-through conductivity contribution to the low-frequency region takes place in the use of the new approach. In other case, the Havriliak-Negami complex permittivity ε^* model description gives strong discrepancies, both in the low-frequency and high-frequency regions of the spectrum. The obtained expressions allows to approximate the experimental spectra with high accuracy in the frequency range from 1 to 10^8 Hz.

Keywords: ferroelectrics, lead-free ceramics, relaxation, complex conductivity, sensors, potassium niobate, PZT.

ВВЕДЕНИЕ

В последние годы все больше внимания уделяется поиску и изучению бессвинцовых сегнетопьезокерамических материалов, способных заменить свинецсодержащие аналоги при разработке устройств нового поколения. Для этого необходимо детально и качественно исследовать механизмы и явления, происходящие в системах на основе свинца. Особенно это касается тех материалов, которые используются для создания большинства датчиков.

Изучение релаксорных свойств бессвинцовых сегнетопьезокерамик началось с открытия пьезокерамики Ва_{0,837}Sr_{0,093}Na_{0,07}Ti_{0,93}Nb_{0,07}O₃ [1]. Недавно были созданы и апробированы альтернативы свинецсодержащим датчикам, в качестве активного элемента которых используются экологически чистые материалы на основе ниобатов щелочных металлов (KNN). На сегодняшний момент они являются наиболее перспективными материалами для дальнейшего применения [2–4].

При исследовании механизмов проявления свойств свинецсодержащих материалов часто рассматривают твердые растворы (TP) системы (1 - x)PbZrO₃ – *x*PbTiO₃ (ЦТС). В качестве примера ее детального изучения можно привести обнаружение при концентрациях $0,495 \le x \le 0,51$ и температуре *T* = 200 К свойств с релаксационным поведением [5]. В этом случае диэлектрические спектры могут быть аппроксимированы формулой Коула – Коула, хотя ранее считалось, что данная система не является релаксорной, как, например, магнониобат свинца.

Самой общей моделью аппроксимации релаксации в сегнетопьезоматералах на сегодняшний день является формула Гавриляка – Негами (1) [6–8]. Варьируя параметры α и β в пределах [0;1], можно получить законы Дебая ($\alpha = 0$, $\beta = 1$), Коула – Коула ($0 \le \alpha \le 1$, $\beta = 1$) и Дэвидсона – Коула ($\alpha = 0$, $0 \le \beta \le 1$).

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{\left(1 + (i\omega\tau)^{1-\alpha}\right)^{\beta}},\tag{1}$$

где $\varepsilon^* = \varepsilon' - i\varepsilon''$ – полная комплексная диэлектри-

ческая проницаемость; $\omega = 2\pi f -$ угловая частота, рад/с; ε_s – значения ε при $\omega \rightarrow 0$ (низкочастотная (НЧ) область); ε_{∞} – значения ε при $\omega \rightarrow \infty$ (высокочастотная (ВЧ) область); τ – наиболее вероятное время релаксации, с.

Некоторые более сложные модели, например распределение Диссадо – Хилла (2) [9–12], достаточно точно описывают экспериментально наблюдаемую дисперсию в диэлектриках:

$$\varepsilon^{*} = \frac{\varepsilon_{\infty} + \Delta \varepsilon (1 - n + m) \cdot {}_{2}F_{1}(1 - n, 1 - m; 2 - n; \frac{1}{1 + j\omega\tau})}{\Gamma(2 - n)\Gamma(m)(1 + j\omega\tau)^{1 - n}}, (2)$$

где ₂F₁(..., ...; ...) – гипергеометрическая функция Гаусса.

Подробно описывая указанные выше модели, авторы работ [11; 13-17] заметили, что при «сильных» и «слабых» релаксациях дополнительный вклад в мнимую часть диэлектрической проницаемости вносит сквозная проводимость. Считается, что она затрудняет исследование поляризационных процессов. Ее влияние уменьшает экстремумы температурно-частотных зависимостей тангенса угла диэлектрических потерь tgδ или мнимой части комплексной диэлектрической проницаемости є", по которым определяются энергии активации [18]. Кроме того, показано, что на микроуровне при сквозной электропроводности отсутствие взаимодействия между релаксаторами и частицами, переносящими заряд, мешает изучению поляризационных процессов. Влияние сквозной проводимости можно исключить, добавив в мнимую часть є" сингулярный член:

$$\varepsilon'' = \varepsilon'' + \frac{\gamma_{st}}{\omega \varepsilon_0}$$

где ε_0 – диэлектрическая постоянная $\approx 8,85 \cdot 10^{-12}$ [Кл²/H^{*}м²]; γ_{st} – электропроводность при $\omega \rightarrow 0$ ($\gamma'_{\omega \rightarrow 0}$).

Учет выражения (3) позволяет не только более точно описывать «сильные» и «слабые» процессы релаксации, но и более точно аппроксимировать экспериментальные кривые. Как известно, анализ релаксации можно проводить не только по частотным зависимостям ε^* , но и по комплексной электропроводности $\gamma^* = \gamma' - i\gamma''$ [11; 16; 19]. Для определения действительной и мнимой частей γ' и γ'' (4–6) предлагается использовать имеющиеся модели с пересчетом действительной ε' и мнимой ε'' диэлектрической проницаемости в проводимости γ' и γ'' ($\gamma' = \varepsilon'' \omega \varepsilon_0$ и $\gamma'' = \varepsilon' \omega \varepsilon_0$):

$$\gamma^* = \overbrace{(\gamma_{st} + \varepsilon'' \, \omega \varepsilon_0)}^{\gamma'} + i \overbrace{(\varepsilon' \, \omega \varepsilon_0)}^{\gamma''}, \qquad (4)$$

$$\gamma' = \gamma' + \gamma_{st}, \tag{5}$$
$$\varepsilon'' + \frac{\gamma_{st}}{2}$$

$$tg\delta = \frac{\omega\varepsilon_0}{\varepsilon'}.$$
 (6)

В частотных зависимостях мнимой части $\gamma''(f)$ наблюдаются экстремумы аналогично дебаевскому распределению в зависимости tgδ. Причем в HЧ-области максимум γ'' соответствует минимуму tgδ. Обратная ситуация происходит в ВЧ-части – минимуму γ'' соответствует максимум tgδ. Эти экстремумы также наблюдаются и в распределении Коула –Коула. Однако применение моделей Гавриляка – Негами для γ^* при описании диэлектрических спектров ни в одной работе не отмечалось.

Целью настоящей работы является получение аппроксимационной модели Гавриляка – Негами для комплексной электропроводности γ^* для описания диэлектрических спектров свинецсодержащих и бессвинцовых керамик в широком термочастотном интервале (T = 20-700 °C; $f = 25-10^6$ Гц).

ОБЪЕКТЫ, МЕТОДЫ ИХ ПОЛУЧЕНИЯ И ИССЛЕДОВАНИЯ

Объектами исследования являлись изготовленные в Центре коллективного пользования НИИ физики Южного федерального института (Ростов-на-Дону) наиболее характерный образец системы ЦТС при x = 0,50 и 2 разреза ТР на основе ниобатов щелочных металлов (KNN), условно обозначенные следующим образом: 1 разрез $(1 - x)(Na_{0,5}K_{0,5})NbO_3 - xLiSbO_3$ (KNN_{1разрез}) при x = 0,09; 5 разрез $(Na_{0,5}K_{0,5})_{1-x}Li_x(Nb_{0,9}Ta_{0,1})O_3$ (KNN_{5разрез}) при x = 0,02.

Пьезокерамику ЦТС изготавливали из высокоочищенного сырья (ч, чда) по обычной керамической технологии. Обжиг проводили в две стадии с промежуточным помолом при температурах $T_1 = T_2 = 870$ °C и времени выдержки $t_1 = t_2 = 7$ ч. Спекание керамических заготовок диаметром 10 мм

НАУКА ЮГА РОССИИ 2018 Том 14 № 4

и толщиной 1 мм осуществляли при температуре $T_{cr} = 1220$ °C (3 ч).

Образцы систем KNN_{1разрез} и KNN_{5разрез} были получены методом твердофазных реакций. В качестве исходного сырья использовали карбонаты натрия, калия и лития, а также оксиды ниобия, сурьмы и, в случае KNN_{5разрез}, тантала. Обжиг также проводили в две стадии при температурах $T_1 = 850$ °C, T₂ = 870 °C, одинаковых для обоих прекурсоров. Время изотермической выдержки для KNN_{1paspes} составило $t_1 = t_2 = 5$ ч, а для $KNN_{spaspes} \tau_1 = \tau_2 = 6$ ч. Твердые растворы конечных составов синтезированы одностадийным обжигом при температуре T = 870 °C (6 ч). Приготовление шихты и помол как прекурсоров, так и ТР проведены в этиловом спирте. Синтезированный порошок гранулировали с водным раствором поливинилового спирта, брикетировали в виде таблеток Ø12 × 3 мм и спекали при температуре T_{сп} = 1120 °C (KNN_{1разрез}) и 1130 °C $(KNN_{5pa3pe3}), t_{cff} = 1,5 \text{ y}.$

Действительные и мнимые части относительной диэлектрической проницаемости и тангенс угла диэлектрических потерь ($\varepsilon'/\varepsilon_0$, $\varepsilon''/\varepsilon_0$, tgδ) на частотах (25–10⁶) Гц исследовали ранее на специальных программно-аппаратных комплексах с использованием прецизионных измерителей иммитанса HIOKI 3522-50 и Е7-20 в интервалах температур (20–700) °C [20; 21]. Предварительная аппроксимация моделей релаксационных процессов в диэлектрических спектрах осуществлялась по формуле (1) с помощью разработанной программы на ЭВМ [22].

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ.

На рисунке 1 представлены температурные зависимости $\varepsilon'/\varepsilon_0(T) \mid_f$ выбранных для изучения пьезокерамик ЦТС и KNN (1-го и 5-го разрезов) в широких интервалах внешних воздействий (T = 20-700 °C и $f = 1-10^6$ Гц). Наблюдаемые максимумы при температурах $T_c^a = 385$ °C (рис. 1*a*), $T_c^6 = 280$ °C (рис. 1*б*) и $T_c^a = 305$ °C (рис. 1*a*) связаны с переходом из сегнетоэлектрической в параэлектрическую фазу. В системе ЦТС начиная с $T \approx 200$ °C наблюдается формирование дополнительных экстремумов, сдвигающихся в сторону T_c^a и уменьшающихся при увеличении частоты *f* (рис. 1*a*). Образование дополнительных экстремумов в бессвинцовых керамиках KNN при температурах выше T_c вызва-

Рис. 1. Зависимости є' $\epsilon_0(T)$ пьезокерамик ЦТС (*a*) и KNN 1-го (б) и 5-го (*в*) разрезов при T = 20-700 °С и $f = 1-10^6$ Гц. Стрелки указывают направление роста *f*. На вставках показана зависимость tg $\delta(T)$.

Fig. 1. Dependences $\varepsilon'/\varepsilon_0(T)$ of PZT (*a*), KNN_{1 paspes} (*b*) and KNN_{5 paspes} (*b*) ceramics at T = 20-700 °C and $f = 1-10^6$ Гц. Arrows indicate the direction growth of frequency *f*. Dependence tg $\delta(T)$ is shown in the pasted pictures.

но ростом сквозной проводимости, дающей значительный вклад в $\varepsilon''/\varepsilon_0(T)$ и, соответственно, в $tg\delta(T)$ (6) (рис. 1δ , ϵ). Указанные дополнительные экстремумы имеют релаксационный характер, который достаточно хорошо описывается моделями Коула – Коула, Дебая и т.д. Модель равновероятного распределения времен релаксации позволяет удовлетворительно аппроксимировать экспериментальные результаты [23].

На рисунке 2 для объекта ЦТС с x = 0.50 при температуре 281 °С изображены частотные зависимости действительной части диэлектрической проницаемости $\varepsilon'/\varepsilon_0(f)$, тангенса угла потерь tg $\delta(f)$ и действительной части проводимости $\gamma'(f)$ (рис. 2*a*), а также построены диаграммы $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$ (Коула – Коула) и их модулей M''(M') (рис. 26). Из рисунков видно, что поведение экспериментальных кривых имеет характер «сильного» релаксационного процесса с высокой сквозной проводимостью [11; 15; 16]. При аппроксимации с помощью модели Гавриляка – Негами (1) с учетом сингулярного члена (3) были получены следующие характеристики: $\tau_{\text{расч.}} = 0,4 \cdot 10^{-3}, \alpha = 0, \beta = 0,81, \epsilon_s = 10438, \epsilon_{\infty} = 1593, \gamma_{st} = 14 \cdot 10^{-5}$. Однако в низко- (f > 300 Гц) и высокочастотной ($f > 3 \cdot 10^5$ Гц) областях достаточно хорошо заметны расхождения. Они, скорее всего, обуславливаются развитием некоторых, еще не объясненных, процессов, происходящих в этой части спектра. Это говорит о том, что модель соответствует каким-то конкретным процессам, отличающимся от реально происходящих. Остается открытым вопрос, почему сингулярный член позволяет решить проблему описания образующегося минимума на зависимостях $tg\delta(f)$ и, соответственно, на $\varepsilon''/\varepsilon_0(f)$ и $\gamma''(f)$, но плавные переходы на экспериментальных кривых в НЧ-области никак не описываются аппроксимационными моделями.

В работах [15; 16] отмечено, что между частотными зависимостями ε^* , γ^* и электрическим модулем M^* имеется взаимосвязь. В аппроксимационных моделях она устанавливается через мнимую и действительную части диэлектрической проницаемости ($\gamma' = \varepsilon'' \omega \varepsilon_0$ и $\gamma'' = \varepsilon' \omega \varepsilon_0$). Учитывая вышесказанное и принимая во внимание, что зависимость $\gamma'(f)$ является, можно сказать, «инверсионным» представлением зависимости $\varepsilon'/\varepsilon_0(f)$ (НЧ-области соответствуют ε_s – максимальное значение ε' и γ_s – минимальные значения γ' ; ВЧ-области соответствуют ε_{∞} – минимальное значение ε' и γ_{∞} – максимальное значение γ') можно предположить, что γ^*

Рис. 2. Зависимости $\varepsilon'/\varepsilon_0(f)$, $tg\delta(f)$, $\gamma'(f)(a)$ и $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$, $M''(M')(\delta)$ керамики ЦТС с x = 0,50 при температуре 281 °C. Стрелками (\updownarrow) показаны расхождения между аппроксимационной моделью Гавриляка – Негами для γ^* (с учетом выражений (11) и (12)) и ε^* . **Fig. 2.** Dependences $\varepsilon'/\varepsilon_0(f)$, $tg\delta(f)$, $\gamma'(f)(a)$ and $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$, $M''(M')(\delta)$ of PZT ceramics with x = 0.50 at 281 °C. The discrepancies between Havriliak-Negami approximation models for γ^* (with use (11) and (12)) and ε^* are shown by arrows (\updownarrow).

Рис. 3. Моделирование зависимостей $\varepsilon'/\varepsilon_0(f)$, $tg\delta(f)$, $\gamma'(f)$ по формуле (7) с учетом его решения (8, 9). **Fig. 3.** The simulation of dependences $\varepsilon'/\varepsilon_0(f)$, $tg\delta(f)$, $\gamma'(f)$ by formula (7) with its solution (8, 9).

связана аналогичными с ε^* соотношениями. Таким образом, используя формулу (1) Гавриляка – Негами для ε^* , получаем модель для аппроксимации комплексной электропроводности γ^* в виде:

$$\gamma^* = \gamma_{\infty} + \frac{\gamma_S - \gamma_{\infty}}{\left(1 + (i\omega\tau)^{1-\alpha}\right)^{\beta}},\tag{7}$$

где γ_s – значения γ при $\omega \rightarrow 0$; γ_{∞} – значения γ при $\omega \rightarrow \infty$.

Решением этого выражения является:

$$\gamma^{*} = \overbrace{\left(\gamma_{\infty} + \frac{E}{D} \frac{(\gamma_{s} - \gamma_{\infty})}{(E^{2} + F^{2})}\right)}^{\gamma^{*}} + i \Biggl(\frac{F}{D} \frac{(\gamma_{\infty} - \gamma_{s})}{(E^{2} + F^{2})}\Biggr), \quad (8)$$

$$A = \cos\varphi l,$$

$$B = \sin\varphi l,$$

$$C = (\omega\tau)^{1-\alpha},$$

$$D = \sqrt{(1 + CA)^{2} + (CB)^{2}}^{\beta},$$

$$E = \cos\varphi 2,$$

$$F = \sin\varphi 2,$$

$$\varphi l = (1 - \alpha)\frac{\pi}{2} + 2\pi k,$$

$$\varphi 2 = \left(\beta \cdot \operatorname{arctg} \frac{CB}{1 + CA}\right) + 2\pi k.$$

Для описания параметров по формуле (7) было произведено случайное моделирование γ' , γ'' с пересчетом в $\varepsilon'' = \gamma'/\omega\varepsilon_0$ и $\varepsilon' = \gamma''/\omega\varepsilon_0$, результат которого приведен на рисунке 3. При этом были получены следующие аппроксимационные параметры: $\tau_{\text{расч.}} = 1 \cdot 10^{-8}$ (с), $\alpha = 0$, $\beta = 1$, $\gamma_s = 1 \cdot 10^{-8}$, $\gamma_{\infty} = 4 \cdot 10^{-4}$. Данный результат подтверждает правильность вышеприведенных предположений и произведенных расчетов по формулам (8–9).

При использовании модели Гавриляка – Негами для γ^* (7) по аналогии с сингулярным членом $\gamma_{st}/\omega\epsilon_0$ (3), который влияет на резкий рост $\epsilon''/\epsilon_0(f)$ при $\omega \to 0$ (вклад сквозной проводимости) [11], для описания частотной зависимости $\gamma'(f)$ в выражении (5) сингулярный член γ_{st} тоже должен зависеть от частоты. Учитывая вышесказанное, введем следующие выражения:

$$\gamma_{st} = \varepsilon''_{\omega} \omega \varepsilon_0, \qquad (10)$$

$$\gamma' = \gamma' + \varepsilon''_{\infty} \omega \varepsilon_0, \tag{11}$$

где $\varepsilon''_{\infty}\omega\varepsilon_0$ – сингулярный член, показывающий вклад сквозной проводимости в γ' ; ε''_{∞} – значения ε'' при $\omega \rightarrow \infty$.

Puc. 4. Зависимости ε'/ε₀(f), tgδ(f), γ'(f) (a) и ε''/ε₀(ε'/ε₀), M''(M') (δ) керамики KNN_{1paspes} при температуре 500 °C. Стрелками (\$) показаны расхождения между аппроксимационной моделью Гавриляка – Негами для γ' ($\tau_{pacq} = 0, 1 \cdot 10^{-5}, \alpha = 0, 44, \beta = 0, 57, \epsilon'_{\infty} = 493, \epsilon''_{\infty} = 2, \gamma_s = 17,97 \cdot 10^{-4}, \gamma_{\infty} = 467, 4 \cdot 10^{-4})$ и для ε* ($\tau_{pacq} = 0, 42 \cdot 10^{-4}, \alpha = 0, 2, \beta = 0, 85, \epsilon_{\infty} = 399, \epsilon_s = 22439, \gamma_{sI} = 20 \cdot 10^{-4}$). **Fig. 4.** Dependences ε'/ε₀(f), tgδ(f), γ'(f) (a) and ε''/ε₀(ε'/ε₀), M''(M') (δ) of KNN_{1paspes} ceramics at 500 °C. The discrepancies between Havriliak-Negami approximation models for γ* ($\tau_{pacq} = 0.1 \cdot 10^{-5}, \alpha = 0.44, \beta = 0.57, \epsilon'_{\infty} = 493, \epsilon''_{\infty} = 2, \gamma_s = 17.97 \cdot 10^{-4}, \gamma_{\infty} = 467.4 \cdot 10^{-4}$) and ε* ($\tau_{pacq} = 0.1 \cdot 10^{-5}, \alpha = 0.44, \beta = 0.57, \epsilon'_{\infty} = 493, \epsilon''_{\infty} = 2, \gamma_s = 17.97 \cdot 10^{-4}, \gamma_{\infty} = 467.4 \cdot 10^{-4}$) and ε* ($\tau_{pacq} = 0.1 \cdot 10^{-5}, \alpha = 0.44, \beta = 0.57, \epsilon'_{\infty} = 493, \epsilon''_{\infty} = 2, \gamma_s = 17.97 \cdot 10^{-4}, \gamma_{\infty} = 467.4 \cdot 10^{-4}$) and ε* ($\tau_{pacq} = 0.42 \cdot 10^{-4}, \alpha = 0.2, \beta = 0.85, \epsilon_{\infty} = 399, \epsilon_s = 22439, \gamma_{sI} = 20 \cdot 10^{-4}$) are shown by arrows (\$).

Ответ на вопрос о возможности аппроксимирования плавно уходящей вверх экспериментальной зависимости $\gamma'(f)$ при $\omega \to \infty$ (ВЧ-область) не является очевидным. Если на поведение зависимости $\varepsilon''/\varepsilon_0(f)$ влияет сквозная проводимость, для учета которой добавляется сингулярный член, то, вероятно, и на зависимость $\gamma''(f)$ также влияет сквозная проводимость. На основе экспериментальных данных и формулы (11) были получены следующие выражения:

$$\gamma'' = \gamma'' + \varepsilon_{\infty} \omega \varepsilon_0, \qquad (12)$$

$$\gamma''_{st} = \varepsilon'_{\infty} \omega \varepsilon_0, \qquad (13)$$

где γ''_{st} – значения γ'' при $\omega \to 0$; $\varepsilon'_{\infty}\omega\varepsilon_0$ – дополнительный член, показывающий вклад сквозной проводимости в γ'' ; ε'_{∞} – значения ε' при $\omega \to \infty$.

Если для аппроксимации $\varepsilon'/\varepsilon_o(f)$, tg $\delta(f)$ и $\gamma'(f)$, а также $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$, M''(M') использовать скорректированную модель Гавриляка – Негами (7) и полученные выражения (10)-(13), то видно, что расхождение с экспериментальными точками практически полностью отсутствует в отличие от модели (1) с использованием сингулярного члена (3) (рис. 2а, б). Отметим, что при использовании данной модели варьирование параметров распределения α , β , и $\varepsilon'_{\alpha}\omega\varepsilon_{0}$ влияет на схождение в НЧ-области $(\omega \to 0)$, а введенный дополнительный член $\varepsilon''_{\omega}\omega\varepsilon_{0}$ отвечает за поведение расчетной кривой ВЧ-области ($\omega \to \infty$). При этом дополнительный член $\varepsilon''_{\omega}\omega\varepsilon_{0}$ показывает, на сколько усложняется картина релаксационного поведения в ВЧ-области. Полученные параметры в результате использования данной модели, $\tau_{\text{расч.}} = 0,4 \cdot 10^{-3}$, $\alpha = 0,28$, $\beta = 0,35$, $\varepsilon'_{\infty} = 1614$, $\varepsilon''_{\infty} = 12, \gamma_s = 11, 2 \cdot 10^{-5}, \gamma_{\infty} = 75, 6 \cdot 10^{-5},$ в принципе соответствуют аналогичным параметрам для модели (1), за исключением α и β .

Если учтем формулу (7) и выражения (11) и (12), то получаем формулу для нового подхода к описанию диэлектрических спектров на основе модели Гавриляка – Негами:

$$\gamma^* = \gamma_{\infty} + \frac{\gamma_S - \gamma_{\infty}}{\left(1 + (i\omega\tau)^{1-\alpha}\right)^{\beta}} + \varepsilon''_{\infty} \,\omega\varepsilon_0 + i\varepsilon'_{\infty} \,\omega\varepsilon_0. \,(14)$$

Для проверки полученных результатов представленная модель была использована для аппроксимации диэлектрических спектров еще двух объектов – бессвинцовых керамик KNN_{1paspe3} (рис. 4) и KNN_{5paspe3} (рис. 5) при температуре 500 °C. Характер представленных на рисунках зависимостей соответствует «сильному» релаксационному процессу в высокотемпературной области [11; 13; 14]. Видно. что использование новой модели (14) демонстрирует практически полное схожление расчетных кривых с экспериментальными данными. Это говорит о работоспособности данной модели. Стандартная же модель Гавриляка – Негами для є^{*} с учетом вклада сквозной проводимости имеет достаточную сходимость для описания процессов релаксации, однако в НЧ- и ВЧ-областях сильно расходится с экспериментальной кривой. Это, вероятно, связано с механизмами или явлениями, происходящими в пьезокерамиках в низкочастотной области, ниже 60 Гц, и продолжающимися в инфранизкочастотном диапазоне, что требует дополнительного исследования и анализа. Зависимости М''(М') (рис. 26, 46, 56) при двух моделях практически везде имеют хорошую сходимость и служат для подтверждения правильности сделанных аппроксимаций.

ЗАКЛЮЧЕНИЕ

Получена теоретическая модель кривых зависимостей $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$, $tg\delta(f)$, $\gamma'(f)$, $\gamma''(f)$, позволяющая хорошо описывать экспериментальный набор зависимостей диэлектрических спектров.

Модель Гавриляка – Негами для комплексной электропроводимости γ^* в отличие от модели, записанной для комплексной диэлектрической проницаемости ϵ^* , позволяет получить гораздо более лучшую сходимость диэлектрических спектров в НЧ-области (вклад сквозной проводимости).

Использование дополнительного члена в мнимой части проводимости $\gamma''(f)$ позволяет хорошо описать высокочастотную часть экспериментальной кривой и показывает, насколько усложняется картина релаксационного поведения в ВЧ-области.

Полученные члены действительной (сингулярный) и мнимой (дополнительный) частей в модели Гавриляка – Негами для комплексной электропроводимости γ^* зависят от предельных значений мнимой и действительной частей ϵ^* при $\omega \to \infty$.

Показано, что в ТР системы ЦТС при x = 0,50 до фазового перехода в параэлектрическую область и в ТР системы KNN после фазового перехода формируются максимумы $\varepsilon'/\varepsilon_0(f)$, которые обусловлены «сильной» релаксацией.

Получены выражения, позволяющие производить аппроксимацию экспериментальных спектров с высокой точностью в диапазоне частот от 1 до 10⁸ Гц.

Puc. 5. Зависимости ε'/ε₀(f), tgδ(f), γ'(f) (a) и ε''/ε₀(ε'/ε₀), M''(M') (b) керамики KNN_{spaspes} при температуре 500 °C. Стрелками (1) показаны расхождения между аппроксимационной моделью Гавриляка – Негами для γ^{*} ($\tau_{pacu} = 0,53 \cdot 10^{-6}$, $\alpha = 0,5$, $\beta = 0,68$, $\varepsilon'_{\infty} = 548$, $\varepsilon''_{\infty} = 2$, $\gamma_s = 24 \cdot 10^{-4}$, $\gamma_{\infty} = 442,7 \cdot 10^{-4}$) и для ε^* ($\tau_{pacu} = 0,42 \cdot 10^{-4}$, $\alpha = 0,22$, $\beta = 0,84$, $\varepsilon_{\infty} = 463$, $\varepsilon_s = 20168$, $\gamma_{sf} = 30 \cdot 10^{-4}$). **Fig. 5.** Dependences $\varepsilon'/\varepsilon_0(f)$, tgδ(f), γ'(f) (a) and $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$, M''(M') (b) of KNN_{spaspes} ceramics at 500 °C. The discrepancies between Havriliak-Negami approximation models for γ^* ($\tau_{pacu} = 0.53 \cdot 10^{-6}$, $\alpha = 0.5$, $\beta = 0.68$, $\varepsilon'_{\infty} = 548$, $\varepsilon'_{\infty} = 2$, $\gamma_s = 24 \cdot 10^{-4}$, $\gamma_{\infty} = 442.7 \cdot 10^{-4}$) and ε^* ($\tau_{pacu} = 0.42 \cdot 10^{-4}$, $\alpha = 0.22$, $\beta = 0.84$, $\varepsilon_s = 20168$, $\gamma_{sf} = 30 \cdot 10^{-4}$) are shown by arrows (1).

БЛАГОДАРНОСТИ

Авторы выражают благодарность д.ф.-м.н. профессору Л.А. Резниченко. Работа выполнена при поддержке РФФИ № 17-08-01724 А в рамках госзадания Южного научного центра РАН, № госрегистрации проекта 01201354240, на оборудовании Центра коллективного пользования «Электромагнитные, электромеханиче-

СПИСОК ЛИТЕРАТУРЫ

- Ravez J., Simon A. 2001. Some solid state chemistry aspects of lead-free relaxor ferroelectrics. J. Solid State Chem. 162(2): 260–265. doi: 10.1006/jssc.2001.9285
- Юрасов Ю.И., Павленко А.В., Вербенко И.А., Садыков Х.А., Резниченко Л.А. 2015. Датчики детонации на основе бессвинцовых композиционных сегнетопьезоматериалов. Конструкции из композиционных материалов. 4: 81–83.
- Nahm S. Lead-free piezoelectric material for vehicle knock sensor, method for manufacturing same, and vehicle knock sensor comprising same. Patent WO 2015163685 (A1), South Korea, 29.10.2015.
- Юрасов Ю.И., Павленко А.В., Вербенко И.А., Резниченко Л.А., Садыков Х.А. 2015. Датчик детонации. Патент РФ № 158291. Заявитель и патентообладатель Южный федеральный университет, № заявки 2015132986. Заявл. 06.08.2015, опубл. 27.12.2015. Бюл. № 36.
- 5. Андрюшина И.Н., Андрюшин К.П., Разумовская О.Н., Шилкина Л.А., Резниченко Л.А., Юрасов Ю.И. 2010. Диэлектрическая спектроскопия твердых растворов системы PbZr_{1-x}Ti_xO₃ (0.495 ≤ x ≤ 0.51) в диапазоне температур 100– 300 К и частот (1 · 10⁻² – 2 · 10⁷) Гц. Известия РАН. Серия физическая. 74(8): 1178–1180.
- Волков А.С., Копосов Г.Д., Перфильев Р.О., Тягунин А.В. 2018. Анализ экспериментальных результатов по модели Гавриляка–Негами в диэлектрической спектроскопии. Оптика и спектроскопия. 124(2): 206–209. doi: 10.21883/ OS.2018.02.45525.200-17
- Havriliak S., Negami S. 1966. A complex plane analysis of α dispersions in some polymer systems. *Journal of Polymer Science Part C*. 14(1): 99–117. doi: 10.1002/polc.5070140111
- Турик А.В., Радченко Г.С., Чернобабов А.И., Турик С.А., Супрунов В.В. 2006. Диэлектрические спектры неупорядоченных сегнетоактивных систем: поликристаллы и композиты. Физика твердого тела. 48(6): 1088–1090.
- Dissado L.A., Hill R.M. 1979. Non-exponential decay in dielectrics and dynamics of correlated systems. *Nature*. 279(5715): 685–689. doi: 10.1038/279685a0
- Богатин А.С., Турик А.В., Андреев Е.В., Игнатова Ю.А., Ковригина С.А., Богатина В.Н. 2012. Релаксационные поляризации в диэлектриках при распределении релаксаторов Диссадо–Хилла. Письма в ЖТФ. 38(2): 58–64.
- Богатин А.С., Турик А.В. 2013. Процессы релаксационной поляризации в диэлектриках с большой сквозной электропроводностью. Ростов н/Д, Феникс: 256 с.

ские и тепловые свойства твердых тел» НИИ физики Южного федерального университета и Центра коллективного пользования «Объединенный центр научно-технологического оборудования ЮНЦ РАН (исследование, разработка, апробация)», а также при поддержке Минобрнауки России: проекты № 3.6371.2017/8.9, № 3.6439.2017/8.9 (базовая часть государственного задания).

- Yeung Y.Y., Shin F.G. 1991. Pulse response functions of dielectric susceptibility. *Journal of Materials Science*. 26(7): 1781–1787. doi: 10.1007/BF00543602
- Богатин А.С., Турик А.В., Ковригина С.А., Богатина В.Н., Андреев Е.В. 2010. Причина разделения релаксационных процессов поляризации на сильные и слабые. Известия РАН. Серия физическая. 74(8): 1115–1117.
- 14. Богатин А.С., Турик А.В., Богатина В.Н., Ковригина С.А., Андреев Е.В. 2011. Сильные и слабые процессы релаксационной поляризации в твердых диэлектриках. Известия РАН. Серия физическая. 75(10): 1498–1500.
- Богатин А.С., Лисица И.В., Богатина С.А. 2002. Влияние сквозной проводимости на определение характеристик процессов релаксационной поляризации. Письма в ЖТФ. 28(18): 61–66.
- Богатин А.С. 2012. Релаксационные поляризации: сильные и слабые процессы. Физика твердого тела. 54(1): 59–65.
- 17. Богатин А.С., Андреев Е.В., Ковригина С.А., Игнатова Ю.А., Буланова А.Л. 2015. Определение параметра релаксационной поляризации в диэлектриках с большой электропроводностью. Известия РАН. Серия физическая. 79(6): 812–814. doi: 10.7868/S0367676515060046
- Богородицкий Н.П., Волокобинский Ю.М., Воробьев А.А., Тареев Б.М. 1965. *Теория диэлектриков*. М., Энергия: 342 с.
- Андреев Е.В. 2015. Релаксационная поляризация в диэлектриках с большой сквозной электропроводностью. Дис. ... канд. физ.-мат. наук. Ростов н/Д: 359 с.
- 20. Юрасов Ю.И. Автоматический измерительный стенд электрофизических параметров сегнето-пьезоматериалов в широком интервале температур и частот. Патент РФ № 66552. Заявитель и патентообладатель Южно-Российский государственный технический университет (Новочеркасский политехнический институт), № заявки 2007102548. Заявл. 23.01.2007, опубл. 21.05.2007. Бюл. № 25.
- 21. Павленко А.В., Юрасов Ю.И. Автоматический стенд для измерения диэлектрических параметров пьезоэлектрических материалов. Патент РФ №119894. Заявитель и патентообладатель Южный федеральный университет, № заявки 2012124140. Заявл. 08.06.12, опубл. 27.08.2012. Бюл. № 24.
- 22. Юрасов Ю.И. 2007. Программа для проведения расчета мнимой и действительной частей диэлектрической проницаемости по формулам Коула – Коула, Дэвидсона – Коула, Дебая и Гаврильяка – Негами (Анализ Коула – Коула ЮКОМП 4.0). Свидетельство об официальной регистрации программы для ЭВМ РФ, № 2007611184.

 Павленко А.В., Турик А.В., Резниченко Л.А., Шилкина Л.А., Константинов Г.М. 2011. Диэлектрическая релаксация в керамике PbFe_{1/2}Nb_{1/2}O₃. Физика твердого тела. 53(9): 1773–1776.

REFERENCES

- Ravez J., Simon A. 2001. Some solid state chemistry aspects of lead-free relaxor ferroelectrics. J. Solid State Chem. 162(2): 260–265. doi: 10.1006/jssc.2001.9285
- Yurasov Yu.I., Pavlenko A.V., Verbenko I.A., Sadykov H.A., Reznichenko L.A. 2015. Knock sensors based on lead-free piezoceramics. *Konstruktsii iz kompozitsionnykh materialov.* 4: 81–83. (In Russian).
- Nahm S. 2015. Lead-free piezoelectric material for vehicle knock sensor; method for manufacturing same, and vehicle knock sensor comprising same. Patent WO 2015163685 (A1), South Korea, 29.10.2015.
- Yurasov Yu.I., Pavlenko A.V., Verbenko I.A., Reznichenko L.A. Sadykov H.A. Datchik detonatsii. Patent RF, № 158291. [Knock sensor: Patent of the Russian Federation No 158291]. Applicant and rights holder Southern Federal University, application number 2015132986. The date of application 6 August 2015, published 27 December 2015. (In Russian).
- 5. Andryushina I.N., Andryushin K.P., Razumovskaya O.N., Shilkina L.A., Reznichenko L.A., Yurasov Yu.I. 2010. Dielectric spectroscopy of PbZr₁ – $_x$ Ti_xO₃ solid solutions (0.495 $\le x \le 0.51$) in a temperature range of 100–300 K at frequencies from 1 × 10⁻² to 2 × 10⁷ Hz. *Bulletin of the Russian Academy of Sciences: Physics*. 74(8): 1127–1129. doi: 10.3103/ S1062873810080265
- Volkov A.S., Koposov G.D., Perfil'ev R.O., Tyagunin A.V. 2018. Analysis of experimental results by the Havriliak–Negami model in dielectric spectroscopy. *Optics and Spectroscopy*. 124(2): 202–205. doi: 10.1134/S0030400X18020200
- Havriliak S., Negami S. 1966. A complex plane analysis of α dispersions in some polymer systems. *Journal of Polymer Science Part C*. 14(1): 99–117. doi: 10.1002/polc.5070140111
- Turik A.V., Radchenko G.S., Chernobabov A.I., Turik S.A., Suprunov V.V. 2006. Dielectric spectra of disordered ferroelectric systems: polycrystals and composites. *Physics of the solid state*. 48(6): 1157–1159. doi: 10.1134/ S1063783406060436
- Dissado L.A., Hill R.M. 1979. Non-exponential decay in dielectrics and dynamics of correlated systems. *Nature*. 279(5715): 685–689. doi: 10.1038/279685a0
- Bogatin A.S., Turik A.V., Andreev E.V., Ignatova Yu.A., Kovrigina S.A., Bogatina V.N. 2012. Relaxation polarizations in dielectrics with Dissado-Hill relaxator distribution. *Technical Physics Letters*. 38(1): 82–84. doi: 10.1134/ S1063785012010208
- Bogatin A.S., Turik A.V. 2013. Protsessy relaksatsionnoy polyarizatsii v dielectrikakh s bolshoy skvoznoy electroprovodnost'yu. [Processes of relaxation polarization in dielectrics with large through conductivity]. Rostov-on-Don, Feniks: 256 p. (In Russian).
- Yeung Y.Y., Shin F.G. 1991. Pulse response functions of dielectric susceptibility. *Journal of Materials Science*. 26(7): 1781–1787. doi: 10.1007/BF00543602

- Bogatin A.S., Turik A.V., Kovrigina S.A., Bogatina V.N., Andreev E.V. 2010. The reason for division of polarization relaxation processes into strong and weak. *Bulletin of the Russian Academy of Sciences: Physics.* 74(8): 1066–1068. doi: 10.3103/S1062873810080083
- 14. Bogatin A.S., Turik A.V., Bogatina V.N., Kovrigina S.A., Andreev E.V. 2011. Strong and weak polarization relaxation processes in solid dielectrics. *Bulletin of the Russian Academy* of Sciences: Physics. 75(10): 1413–1415. doi: 10.3103/ S1062873811100030
- Bogatin A.S., Lisitsa I.V., Bogatina S.A. 2002. The effect of percolation conductivity on the characteristics of relaxation polarization processes. *Technical Physics Letters*. 28(9): 779– 781. doi: 10.1134/1.1511783
- Bogatin A.S. 2012. Relaxation polarizations: strong and weak processes. *Physics of the Solid State*. 54(1): 62–69. doi: 10.1134/S1063783412010064
- Bogatin A.S., Andreev E.V., Kovrigina S.A., Ignatova Y.A., Bulanova A.L. 2015. Determining the relaxation polarization parameters in dielectrics with high electrical conductivity. *Bulletin of the Russian Academy of Sciences: Physics*. 79(6): 729–731. doi: 10.3103/S1062873815060040
- Bogoroditskiy N.P., Volokobinskiy Yu.M., Vorob'ev A.A., Tareev B.M. 1965. *Teoriya dielektrikov*. [*Theory of dielectrics*]. Moscow, Energiya: 342 p. (In Russian).
- Andreev E.V. 2015. Relaksatsionnaya polyarizatsiya v dielektrikakh s bolshoy skvoznoy electroprovodnosť yu. [Relaxation polarization in dielectrics with large through conductivity. PhD Thesis]. Rostov-on-Don: 359 p. (In Russian).
- 20. Yurasov Yu.I. 2007. Avtomaticheskiy izmeritel'nyy stend elektrofizicheskikh parametrov segneto-p'yezomaterialov v shirokom intervale temperatur i chastot. Patent RF № 66552. [Automatic measuring bench of electrophysical parameters of ferro-piezomaterials in a wide range of temperatures and frequencies. Patent of the Russian Federation No 66552]. Applicant and rights holder South-Russian State Technical University, application number 2007102548. The date of application 23 January 2007, published 21 May 2007. Bul. № 25. (In Russian).
- 21. Pavlenko A.V., Yurasov Yu.I. Avtomaticheskiy stend dlya izmereniya dielektricheskikh parametrov p'yezoelektricheskikh materialov. Patent RF №119894. [Automatic test bench for measuring dielectric parameters of piezoelectric materials. Patent of the Russian Federation No 119894]. Applicant and rights holder Southern Federal University, application number 2012124140. The date of application 8 June 2012, published 27 August 2012. Bul. № 24. (In Russian).
- 22. Yurasov Yu.I. 2007. Programma dlya provedeniya rascheta mnimoy i deystvitel'noy chastey dielektricheskoy pronitsayemosti po formulam Koula – Koula, Devidsona – Koula, Debaya i Gavril'yaka – Negami (Analiz Koula – Koula YUKOMP 4.0). Svidetel'stvo ob ofitsial'noy registratsii programmy dlya EVM RF, №2007611184. [Calculation of imaginary and real parts of dielectric permittivity according to the formulas of Cole-Cole, Davidson-Cole, Debye and Havriliak-Negami (Cole-Cole analysis YUKOMP 4.0), No 2007611184]. (In Russian).
- 23. Pavlenko A.V., Turik A.V., Reznichenko L.A., Shilkina L.A., Konstantinov G.M. 2011. Dielectric relaxation in the PbFe_{1/2}Nb_{1/2}O₃ ceramics. *Physics of the Solid State*. 53(9): 1872–1875. doi: 10.1134/S106378341109023X

Поступила 20.08.2018