ХИМИЯ И НОВЫЕ МАТЕРИАЛЫ

УДК 547.775:544.527.22

ФОТОХРОМНЫЕ АЗОМЕТИНИМИНЫ НА ОСНОВЕ 5-ФЕНИЛПИРАЗОЛИДИН-3-ОНА

© 2016 г. О.С. Попова¹, В.А. Брень¹, Ю.В. Ревинский², К.С. Тихомирова¹, Г.С. Бородкин¹, Е.Н. Шепеленко², О.И. Дмитриева¹, А.Д. Дубоносов², академик В.И. Минкин^{1, 2}

Аннотация. Методами электронной спектроскопии поглощения и испускания, ИК- и ЯМР ¹Н-спектроскопии исследованы фотоиндуцированные превращения арилиденазометиниминов — производных 5-фенилпиразолидин-3-она. Определена зависимость параметров фотохромной изомеризации азометиниминов от характера заместителей арилиденового фрагмента. 1-(4-Метоксифенилметилиден)-, 1-бензилиден- и 1-(3-нитрофенилметилиден)-3-оксо-5-фенилпиразолидин-1-ий-2-иды претерпевают термически обратимую внутримолекулярную фотоциклизацию с образованием диазиридинового цикла. Скорость обратной темновой реакции раскрытия цикла повышается с увеличением полярности растворителя. В результате фотоциклизации 1-(4-нитрофенилметилиден)-3-оксо-5-фенилпиразолидин-1-ий-2-ида образуется устойчивый фотопродукт, не обладающий люминесценцией, в отличие от исходной формы. Совокупность спектральных характеристик позволяет рассматривать полученные азометинимины в качестве молекулярных переключателей оптических и флуоресцентных свойств.

Ключевые слова: азометинимины, 5-фенилпиразолидин-3-он, фотохромизм, флуоресценция, молекулярные переключатели.

PHOTOCHROMIC AZOMETHINE IMINES BASED ON 5-PHENYLPYRAZOLIDIN-3-ONE

O.S. Popova¹, V.A. Bren¹, Yu.V. Revinskiy², K.S. Tikhomirova¹, G.S. Borodkin¹, E.N. Shepelenko², O.I. Dmitrieva¹, A.D. Dubonosov², Academician RAS V.I. Minkin^{1,2}

Abstract. Photo-induced transformations of arylidene azomethine imines based on 5-phenylpyrazolidin-3-one were investigated by means of electronic absorption and emission spectroscopy, IR and ¹H NMR spectroscopy. The dependence of parameters of photochromic isomerization of azomethine imines on the nature of substituents in arylidene fragment was determined. 1-(4-Methoxyphenylmethylidene)-, 1-benzylidene and 1-(3-nitrophenylmethylidene)-3-oxo-5-phenylpyrazolidin-1-ium-2-ides undergo thermally reversible intramolecular photocyclization with the formation of a diaziridine cycle. The rate of the reverse dark reaction of cycle re-opening grows with the increase of the solvent polarity. A stable photoproduct that does not exhibit luminescence in contrast to the initial form appears as a result of the photocyclization of 1-(4-nitrophenylmethylidene)-3-oxo-5-phenylpyrazolidin-1-ium-2-ide. The combination of spectral characteristics allows considering the obtained azomethine imines as molecular switches of optical and fluorescent properties.

Keywords: azomethine imines, 5-phenylpyrazolidin-3-one, photochromism, fluorescence, molecular switches.

¹ Научно-исследовательский институт физической и органической химии Южного федерального университета (Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation), Российская Федерация, 344090, г. Ростов-на-Дону, пр. Стачки, 194/2, e-mail: bren@ipoc.sfedu.ru

² Южный научный центр Российской академии наук (Southern Scientific Centre, Russian Academy of Sciences, Rostov-on-Don, Russian Federation), Российская Федерация, 344006, г. Ростов-на-Дону, пр. Чехова, 41, e-mail: aled@ipoc.sfedu.ru

Бистабильные фотохромные соединения представляют значительный интерес в плане создания полифункциональных материалов для молекулярной электроники, устройств оптической молекулярной памяти, логических систем и фотодинамических хемо- и биосенсоров [1-6]. К наиболее исследованным классам фотохромов относятся спиропираны и спирооксазины [7; 8], дигетарилэтены [9; 10], фульгиды [11], фульгимиды [12] и азобензолы [13]. В меньшей степени в литературе описаны соединения с отрицательным фотохромизмом – норборнадиены [14; 15], ацилотропные гетероциклические енаминокетоны [16-18] и азометинимины [19]. Особенность строения циклических азометиниминов О-производных ароматических карбальдегидов и пиразолидин-3-она заключается в наличии поляризованной цепи пяти атомов, три из которых структурно принадлежат гетероциклу. Их фотоиндуцированная внутримолекулярная циклизация, приводящая к образованию бициклических диазиридинов С, термически и фотохимически обратима [20-23], является стереоспецифической, зависит от электронных эффектов заместителя R⁵ и полярности растворителя [24] (схема 1). Превращения реализуются как в растворах, так и в полимерных матрицах [25; 26].

В настоящей статье с целью изучения влияния различных по природе арилиденовых заместите-

Схема 1

лей R на спектральные и фотохромные свойства азометиниминов осуществлен синтез, исследовано строение и превращение соединений **1a–e O** (схема 2).

Азометинимины 1а-е были синтезированы конденсацией 5-фенилпиразолидин-3-она с R-замещенными бензальдегидами. В их ИК-спектрах содержатся интенсивные пики в области 1689-1650 см⁻¹, относящиеся к валентным колебаниям сопряженных C=O и C=N связей соответственно. По данным спектров ЯМР ¹Н, в CDCl, и ДМСО-d. соединения 1а-е существуют в виде открытого азометиниминного изомера О [27-29]. Наличие в пятом положении пиразолидонового кольца одного протона наряду с фенильным заместителем приводит к появлению в CDCl, квартетного сигнала от двух неэквивалентных протонов соседней СН₂-группы в области 3,3-2,8 м.д. На положение сигнала метинового протона оказывают влияние электронные эффекты заместителей в арилиденовом фрагменте, проявляющиеся в случае электронодонорных заместителей в незначительном сдвиге сигнала по сравнению с соединением 1с в сильное поле на 0,19 и 0,02 м.д. для соединений 1а и 1b соответственно, а в случае электроноакцепторного заместителя – нитрогруппы – в сторону слабого поля на 0,09 и 0,07 м.д. для соединений 1d и 1e соответственно. Сигнал α-протонов ароматического кольца бензилиденового фрагмента для соединений 1а-е проявляется в более слабом поле в области 3,34-2,79 м.д. по сравнению с другими ароматическими протонами. Изменение полярности растворителя при переходе от CDCl₂ к ДМСО- d_6 незначительно сказывается на положении сигналов протонов пиразолидонового кольца и ароматических заместителей. Зависимость сигнала метинового протона от электронных эффектов заместителей, наблюдавшаяся в CDCl₃, остается прежней, однако вследствие сольватационных эффектов сигналы метиновых протонов сдвинуты в сторону слабого поля на 0,5-0,7 м.д.

Ph

CXEMA 2

Ph

$$CXEMA 2$$

Ph

 $CXEMA 2$

Ph

 $CXEMA 3$

Ph

 $CXEMA 2$

Ph

 $CXEMA 3$

Ph

 $CXEMA 4$

Ph

 $CXEMA 3$

Ph

 CX

Электронные спектры поглощения азометиниминов **1**а-е в ацетонитриле характеризуются длинноволновыми полосами поглощения в районе 344–396 нм с молярными коэффициентами экстинкции в максимумах 27700–38360 л·моль⁻¹·см⁻¹ (табл. 1).

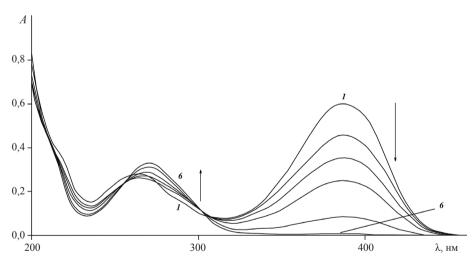

Таблица 1. Спектрально-абсорбционные характеристики соединений **1а**—е в ацетонитриле при 293 К

Table 1. Spectral absorption characteristics of compounds 1a-e in acetonitrile at 293 K

Соединения	Открытая форма О	Циклическая фотоформа С	Квантовый выход
	λ_{\max}^{abs} , нм $(\varepsilon\cdot 10^{-3}, \mathrm{n\cdot Monb^{-1}\cdot cm^{-1}})$	$\lambda_{ ext{max}}^{ ext{abs}}$, HM $(A_{ ext{max}})$	$\phi_{\mathbf{O} \to \mathbf{C}}$
1a	245 (5,24), 294 (3,56), 396 (29,50)	242 (0,22), 333 (0,18)	0,01
1b	345 (41,11), 362 (38,36)	242 (0,41)	0,23
1c	337 (29,96), 351 (27,70)	230 пл. (0,26)	0,33
1d	344 (35,73)	260 (0,22)	0,04
1e	262 (16,42), 385 (35,43)	270 (0,33)	0,04

Примечание. $\lambda_{\max}^{\text{abs}}$ — максимум полосы поглощения; ϵ — коэффициент экстинкции в максимуме полосы поглощения; A_{\max} — величина оптической плотности в максимуме полосы поглощения фотоиндуцированной формы C; $\phi_{o\to c}$ — квантовый выход реакции фотопиклизации.

Note. λ_{\max}^{abs} – maximum of absorption band; ϵ – the extinction coefficient at the maximum of absorption band; A_{\max} – optical density at the maximum of absorption band of photo-induced form C; $\phi_{O\to C}$ – the quantum yield of photocyclization.

Рис. 1. Электронные спектры поглощения азометинимина **1e** в ацетонитриле до (1) и после 20 с (2), 30 с (3), 40 с (4), 60 с (5), 100 с (6) облучения ($\lambda_{06\pi}$ = 365 нм, C = 1,7·10⁻⁵ M, 293 K) **Fig. 1.** Electronic absorption spectra of azomethine imine **1e** in acetonitrile before (1) and after 20 s (2), 30 s (3), 40 s (4), 60 s (5), 100 s (6) of irradiation (λ_{irr} = 365 nm, C = 1.7·10⁻⁵ M, 293 K)

Облучение растворов азометиниминов **1b–e O** в ацетонитриле фильтрованным светом ртутной лампы ($\lambda_{\text{обл}} = 365$ нм) приводит к спектральным изменениям, характерным для внутримолекулярной фотоциклизации с образованием арилдиа-

забицикло[3.1.0] гексан-2-онов (бициклических диазиридинов) **1b-е** С [19–22] (схема 2) и сопровождается уменьшением интенсивности длинноволновых максимумов поглощения и появлением новых полос поглощения в коротковолновой области спектра (табл. 1, рис. 1) вплоть до практически

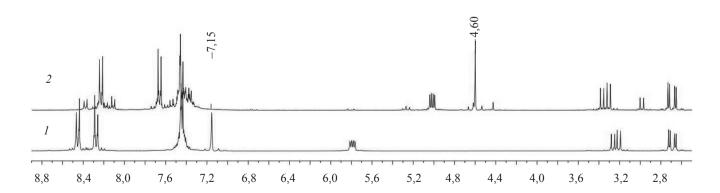
полной конверсии исходных соединений.

При длительном облучении раствора соединения **1e O** в CD₃CN в спектре ЯМР ¹Н наблюдается появление синглетного сигнала при 4,60 м.д. и одновременное исчезновение пика метинового протона при 7,15 м.д., а также изменение положения сигналов остальных протонов исходного азометинимина (рис. 2), что полностью подтверждает образование бициклического диазиридина **1e C** [20; 21].

Арилиденовый заместитель RC_6H_4 и полярность растворителя оказывают существенное влияние на параметры фотохромного процесса $\mathbf{O} \rightarrow \mathbf{C}$ (табл. 1). Так, квантовый выход фотоциклизации азометинимина 1а, содержащего наиболее сильную электронодонорную группу $R = 4-Me_2N$, в ацетонитриле даже при облучении суммарным светом ртутной лампы составляет всего 0,01. В толуоле реакция образования диазиридина 1а С протекает значительно более эффективно при облучении фильтрованным светом $\lambda_{\text{обл}} = 365$ нм. Такие явления связаны с высокой скоростью обратного процесса рециклизации соединения 1а C→1а O (особенно в среацетонитрила). Реакция раскрытия диазиридинового цикла С→О соединений **1b,с** наблюдается в растворах

в ацетонитриле при 293 К в темновых условиях после прекращения облучения. Время жизни соединения **1b** составляет 826 с, а для диазиридина **1c** – 86 400 с. Уменьшение полярности растворителя (толуол) на порядок повышает время жиз-

ни соединений **1b,c**. Наибольшей термической устойчивостью обладают диазиридины с электроноакцепторными арилиденовыми фрагментами RC_6H_4 : $R = 3-NO_2$ (**1d O**) и $R = 4-NO_2$ (**1e O**). Так, интенсивность длинноволновой полосы поглощения диазиридина **1e O** в ацетонитриле остается практически неизменной в течение 168 ч в темноте при 293 K, а также при нагревании раствора до 70 °C.


Растворы соединений **1a-d O** не обладают флуоресцентными свойствами. Однако в случае азометинимина 1е О, имеющего наиболее сильную электроноакцепторную группу R = 4-NO₂, в растворе в ацетонитриле наблюдается эмиссия с аномальным стоксовым сдвигом ($\lambda_{em} = 525$ нм, $\lambda_{ex} = 390$ нм, $\phi_{fl} = 0.03$), что, по-видимому, связано с образованием комплекса с переносом заряда в возбужденном состоянии. Диазиридин 1е С не флуоресцирует, поэтому уменьшение интенсивности флуоресценции до нулевых значений в ходе фотореакции $1e O \rightarrow 1e C$ свидетельствует о полном превращении исходного азометинимина в циклический изомер. Остальные диазиридины также не флуоресцентны, за исключением соединения 1d C, которое обладает малоинтенсивной эмиссией с обычной величиной стоксова сдвига $(\lambda_{em} = 305 \text{ нм}, \lambda_{ex} = 255 \text{ нм})$, которая модулируется светом в ходе фотопроцесса $1d O \rightarrow 1d C$.

Таким образом, азометинимины **1b—е** представляют собой молекулярные переключатели оптических свойств с отрицательным фотохромизмом. В ходе облучения 1-(3-нитрофенилметилиден)-3-оксо-5-фенилпирзолидин-1-ий-2-ида **1d O** происходит образование флуоресцирующего изомера **1d C**. Фотоциклизация 1-(4-нитрофенилметилиден)-3-оксо-5-фенилпиразолидин-1-ий-2-ида **1e** сопровождается образованием устойчивого фотопродукта с исчезновением флуоресценции исходной формы, что может быть использовано в устройствах оптической записи информации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1Н регистрировали на спектрометре Bruker Avance-600 (600 МГц) в CDCl и СН, CN и ДМСО-d. Химические сдвиги измеряли относительно ТМС. Колебательные спектры записаны на приборе Varian Excalibur 3100 FT-IR методом нарушенного полного внутреннего отражения с использованием кристалла ZnSe. Масс-спектры зарегистрированы испольc метода электронной ионизации зованием масс-спектрометре Shimadzu GCMS-OP2010 SE с прямым вводом образца в ионный источник (70 эВ). Электронные спектры поглощения измерены на спектрофотометре Varian Cary 100. Фотолиз растворов осуществлен ртутной газоразрядной лампой ДРШ-250 мощностью 250 Вт с набором интерференционных светофильтров. Спектры флуоресценции сняты на спектрофлуориметре Varian Cary Eclipse. Значения квантовых выходов флуоресценции определены методом Паркера - Риса [30]. Для приготовления растворов использовали толуол и ацетонитрил спектроскопической чистоты (Aldrich). Температуру плавления измеряли в стеклянных капиллярах на приборе ПТП (М). Динамику реакций и чистоту полученных соединений контролировали методом TCX (пластины Silufol U-254, элюент хлороформ-метанол (5:1), проявление парами йода во влажной камере).

Общая методика получения азометиниминов (1а-е). Смесь 5-фенилпиразолидин-3-она [31] (1,62 г, 10 ммоль) и соответствующего замещенного бензальдегида (10 ммоль) в 25 мл 2-пропанола кипятили с обратным холодильником до завершения реакции. Окончание реакции определяли с помощью ТСХ. Реакционную смесь охлаждали до комнатной температуры, образовавшийся осадок отфильтровывали и перекристаллизовывали из соответствующего растворителя.

Рис. 2. Спектры ЯМР ¹H соединения **1e** в CD₃CN (C = 3,4·10⁻² M, 293 K) до (*I*) и после 18 ч облучения (*2*), $\lambda_{\text{обл}}$ = 365 нм **Fig. 2.** NMR ¹H spectra of compound **1e** in CD₃CN (C = 3.4·10⁻² M, 293 K) before (*I*) and after 18 h of irradiation (*2*), λ_{irr} = 365 nm

1-(4-Диметиламинофенилметилиден)-3-ок-со-5-фенилпиразолидин-1-ий-2-ид (1а). Получали по общей методике, используя 4-(диметиламино)бензальдегид. Перекристаллизовывали из 2-пропанола. Выход 1,10 г (44%). Светло-желтые кристаллы, т.пл. > 250 °C (разл.). ИК-спектр, v/см⁻¹: 3082, 2968, 1670, 1650, 1589, 1527, 1491, 1454, 1438, 1412. Спектр ЯМР ¹H (CDCl₃), δ /м.д.: 8,12 (д, 2H, H_{Ar}, J 8,7 Гц), 7,39–7,31 (м, 5H, H_{Ar}), 6,66–6,61 (м, 3H, CH=N⁺, H_{Ar}), 5,05 (дд, 1H, C<u>H</u>-Ph, J 5,7, 9,9 Гц), 3,25 (дд, 1H, CH₂C=O, J 9,9, 16,5 Гц), 3,04 (с, 6H, Me₂N), 2,80 (дд, 1H, CH₂C=O, J 5,7, 16,8 Гц). Масс-спектр, m/z (I_{отн}, %): 293 [М]⁺ (50), 292 (7), 250 (1), 189 (18), 133 (100), 131 (6), 118 (31), 104 (13). Найдено, мас. %: С 73,87; H 6,55. C₁₈ H₁₉ N₃ O. Вычислено, мас. %: С 73,69; H 6,53.

1-(4-Метоксифенилметилиден)-3-оксо-5-фенилпиразолидин-1-ий-2-ид (1b) получали по методике [32].

1-Бензилиден-3-оксо-5-фенилпиразолидин- 1-ий-2-ид (**1c**) получали по методике [33]. **1-(3-Нитрофенилметилиден)-3-оксо-5-фенил- пиразолидин-1-ий-2-ид** (**1d**). Получали по общей методике, используя 3-нитробензальдегид. Перекристаллизовывали из ацетонитрила. Выход: 1,06 г, 36%. (СН₃СN). Порошок желтого цвета, т.пл. 183–184°С. ИК-спектр, v/см⁻¹: 3342, 3081, 3060, 2979, 1671, 1581, 1566, 1527, 1493, 1457, 1434. Спектр ЯМР ¹H (CDCl₃), δ /м.д.: 9,03 (д, 1H, H_{Ar}, J 8,1 Гц), 8,67 (с, 1H, H_{Ar}), 8,26 (д, 1H, H_{Ar}, J 8,1 Гц), 7,68–7,36 (м, 6H, H_{Ar}), 6,89 (с, 1H, CH=N⁺), 5,63 (дд, 1H, С<u>Н</u>-Ph, J 9,8, 5,7 Гц), 3,34 (дд, 1H, CH₂C=O, J 17,0,

9,8 Гц), 2,92 дд (1H, CH₂C=O, J 5,7, 17,0 Гц). Массспектр, m/z (I_{отн}, %): 295 [M]⁺ (22), 294 (18), 252 (1), 248 (2), 173 (3), 136 (7), 131 (11), 104 (100). Найдено, мас. %: С 64,89; H 4,57. C₁₆H₁₃N₃O₃. Вычислено, мас. %: С 65,08; H 4,44.

1-(4-Нитрофенилметилиден)-3-оксо-5-фенилпиразолидин-1-ий-2-ид (1е) получали по методике [32].

6-(4-Нитрофенил)-1,5-диазабицикло[3.1.0] гексанон (1е С). Раствор азометинимина 1е О (10 мг, 34 ммоль) в 1 мл СД СN в кварцевом фотореакторе (V = 5 мл, l = 1 см), расположенном на расстоянии 15 см от источника излучения, облучали светом ртутной лампы ДРШ-250 светом $\lambda_{\text{обл}} = 365 \text{ нм}$ при воздушном охлаждении и перемешивании. Полноту протекания реакции контролировали методом ЯМР ¹Н. Через 18 ч облучения раствор содержал 95% фотопродукта - бициклического диазиридина **1e** С. Спектр ЯМР ¹Н (CD,CN), δ/м.д.: 8,23 (д, 2H, H_{AP} , J 8,7 Γ ц), 7,66 (д, 2H, H_{AP} , J 8,7 Γ ц), 7,50-7,39 (м, 5H, H_{Ar}), 5,02 (дд, 1H, CH-Ph, J 4,5, 9,6 Гц), 4,60 (c, 1H, CH-N), 3,34 дд (1H, СН,С=О, Ј 9,6, 19,5 Гц), 2,69 (дд, 1Н, СН,С=О, J 4,5, 19,5 Γ ц).

Исследование проведено в рамках выполнения гранта Южного федерального университета № 213.01-2014/005ВГ. Ю.В. Ревинский, Е.Н. Шепеленко и А.Д. Дубоносов выполняли работу в рамках реализации Государственного задания на 2016 г. № 007-01114-16 ПР 0256-2014-0009.

СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

- Minkin V.I. 2008. Bistable organic, organometallic, and coordination compounds for molecular electronics and spintronics. *Russ. Chem. Bull.* 57(4): 687–717.
- 2. Andreasson J., Pischel U. 2015. Molecules with a sense of logic: a progress report. *Chem. Soc. Rev.* 44(5): 1053–1069.
- 3. Zhang J., Zou Q., Tian H. 2013. Photochromic materials: more than meets the eye. *Adv. Mater.* 25(3): 378–399.
- Barachevsky V.A., Krayushkin M.M. 2008. Photochromic organic compounds for optical memory. *Russ. Chem. Bull.* 57(4): 867–875.
- Natali M., Giordani S. 2012. Molecular switches as photocontrollable "smart" receptors. *Chem. Soc. Rev.* 41(10): 4010–4029.
- Wang G., Zhang J. 2012. Photoresponsive molecular switches for biotechnology. *J. Photochem. Photobiol. C: Photochem. Rev.* 13(4): 299–309.

- Klajn R. 2014. Spiropyran-based dynamic materials. *Chem. Soc. Rev.* 43(1): 148–184.
- Minkin V.I. 2004. Photo-, Thermo-, Solvato-, and Electrochromic Spiroheterocyclic Compounds. *Chem. Rev.* 104(5): 2751–2776.
- Irie M. 2000. Diarylethenes for memories and switches. *Chem. Rev.* 100(5): 1685–1716.
- Irie M., Fukaminato T., Matsuda K., Kobatake S. 2014. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. *Chem. Rev.* 114(24): 12174–12277.
- Yokoyama Y. 2000. Fulgides for memories and switches. Chem. Rev. 100(5): 1717–1739.
- Rueck-Braun K., Mayer K., Hebert A., Michalik F. 2012.
 Fulgimides. In: Organic Photochemistry and Photobiology.
 A. Griesbeck, M. Oelgemöller, F. Ghetti (Eds). London; New York; Boca Raton, CRC Press: 607–626.

- 13. Zhao X.Y., Wang M.Z. 2006. Synthesis and photoresponsive behavior of azobenzene-functionalized polythiophene films. *Eur. Polymer J.* 42(2): 247–253.
- Dubonosov A.D., Bren V.A., Minkin V.I. 2004. The Photochemical Reactivity of Norbornadiene-Quadricyclane System.
 In: Handbook of Organic Photochemistry and Photobiology (2nd ed.). W.M. Horspool, F. Lenci. (Eds). Boca Raton, CRC Press: 17-1–17-34.
- Chernoivanov V.A., Dubonosov A.D., Bren V.A., Minkin V.I., Suslov A.N., Borodkin G.S. 1997. Photoinitiated rearrangements of 3-phenylnorbornadiene with conjugated substituents in 2-position. *Mol. Cryst. Liq. Cryst.* 297(1): 239–245.
- Minkin V.I., Bren V.A., Dubonosov A.D., Tsukanov A.V. 2012. Acylotropic intramolecular rearrangements of keto enamines of benzo[b]-annelated heterocycles. *Chem. Heterocycl. Compd.* 48(1): 107–116.
- Dubonosov A.D., Minkin V.I., Bren V.A., Popova L.L., Rybalkin V.P., Shepelenko E.N., Tkalina N.N., Tsukanov A.V. 2003. Photochromic 2-(N-acyl-N-arylaminomethylene)-benzo[b]thiophene-3(2H)-ones with fluorescent labels and/or crown-ether receptors. ARKIVOC. 13: 12–20.
- Rybalkin V.P., Popova L.L., Dubonosov A.D., Shepelenko E.N., Revinskii Yu.V., Bren V.A., Minkin V.I. 2001. Photoacylotropic enaminoketones with a fluorophoric migrant. *Russ. J. Org. Chem.* 37(9): 1318–1322.
- Kuz'min M.G., Koz'menko M.V. 1990. Luminescence of Photochromic Compounds. In: *Organic Photochromes*. A.V. El'tsov (Ed). N-Y; London, Plenum Press: 245–265.
- 20. Shulz M., West G. 1970. Eine neue Diaziridin-Synthese durch Photochemische Cyclisierung von Azomethiniminen. *J. Prakt. Chem.* 312(1): 161–164.
- 21. Shulz M., West G. 1973. Photochemische Reaktionen von Pyrazolidon-(3)-betainen. II. Synthese der β-Hydrazino-isovaleriansäure. *J. Prakt. Chem.* 315(4): 711–716.
- Dorn H. 1981. Advances in the chemistry of pyrazolidones, iminopyrazolidines, and amino- and hydroxypyrazoles. *Chem. Heterocycl. Compd.* 17(1): 1–24.
- Klimakova A., Kozmenko M.V., Tomashevskii G., Kuzmin M.G. 1980. Fluorescence properties and photoisomerization of pyrene-substituted pyrazolidone-(3)-azomethinimine –

- photochemical-reaction from the unrelaxed state. *High Energy Chem.* 14(2): 110–116.
- Geissler G., Menz I., Köppel H., Kretschmer M., Kulpe S. 1983. Untersuchung der Struktur Photochemisch aus Pyrazolidon-(3)-azomethiniminen Erzeugter 1,5-Diaza-bicyclo-[3,1,0]-hexan-2-one mit Hilfe der LIS und der RKSA. J. Prakt. Chem. 325(6): 995-1001.
- Воробьев А.Х. 2009. Фотоселекция и фотоориентация.
 В кн: Экспериментальные методы химии высоких энергий.
 М.Я. Мельников (ред). М., изд-во МГУ: 369–437.
 - Vorob'yev A.Kh. 2009. [Photoselection and photoorientation]. In: *Experimental 'nye metody v khimii vysokikh energiy*. [*Experimental methods in high energy chemistry*]. M.Ya. Mel'nikov (Ed). Moscow, Moscow State University Publishers: 369–437. (In Russian).
- Minaylov V.V., Vorobiev A.Kh., Gurman V.S. 1994. The rotation mobility of the guest molecules and its reactivity. *Mol. Cryst. Liq. Cryst.* 248(1): 97–101.
- Koptelov Yu.B., Sednev M.V., Kostikov R.R. 2012. (Z)-1-Al-kylidene- and 1-Arylmethylidene-5,5-dimethyl-3-oxopyrazoli-din-1-ium-2-ides and Their Cycloaddition to N-Arylmaleimides. *Russ. J. Org. Chem.* 48(6): 804–814.
- 28. Geissler G., Hippius M., Tomaschewski G. 1982. Azomethinimine. V. ¹H-NMR-Spektren und sterischer Bau von arylsubstituierten Pyrazolidon-Azomethiniminen. *J. Prakt. Chem.* 324(6): 903–909.
- Radeglia R., Dorn H. 1982. 13C-NMR-Spektrum und Elektronenstruktur vom 1-Benzyliden-pyrazolid-3-on-N, N-betain. Z. Chem. 22: 313–314.
- Parker C.A. 1968. Photoluminescence of Solutions. Amsterdam; London; New York, Elsevier Press.
- 31. Gould E., Lebl T., Slawin A.M.Z., Reid M., Smith A.D. 2010. Structural effects in pyrazolidinone-mediated organocatalytic Diels Alder reactions. *Tetrahedron*. 66(46): 8992–9008.
- 32. Xu X., Qian Y., Zavalij P.Y., Doyle M.P. 2013. Highly Selective Catalyst-Dependent Competitive 1,2-C→C, -O→C, and -N→C Migrations from β-Methylene-β-silyloxy-β-amido-α-diazoacetates. *J. Am. Chem. Soc.* 135(4): 1244–1247.
- 33. Suarez A., Downey C.W., Fu G.C. 2005. Kinetic Resolutions of Azomethine Imines via Copper-Catalyzed [3 + 2] Cycloadditions. *J. Am. Chem. Soc.* 127(32): 11244–11245.

Поступила 31.05.2016