<u>Предварительный отчёт</u> по обследованию вод Солёного озера, расположенного в зоне отдыха г. Батайска

Результаты исследований ЮНЦ РАН. Обследование вод озера в 2015 г. позволило оценить минерализацию вод озера. Концентрация минеральных солей в водах озера 5 ± 0.5 г/л по всей его акватории (табл. 1), т.е. по существующей классификации минерализация вод озера относится к категории «солёная» (к ней относят воды с минерализацией от 3.0 до 10.0 г/л). В поверхностных водах суши такие концентрации минеральных солей обычно не встречаются. Возможность разведения рыб в озере может быть оценена после определения ионного состава вод.

Концентрация водородных ионов (pH) в водах озера варьировала в пределах от 7,6 до 7,8 (табл. 1), что также редко встречается в природных водах юга России, где pH обычно превышает 8,0 и иногда довольно значительно (особенно при интенсивном цветении фитопланктона). Обращают на себя внимание высокие концентрации минеральных форм биогенных элементов: фосфора — 0,044-0,055 мгР/л, кремния — 2,4-3,0 мгЅі/л, нитратов — 1,0-1,5 мгN/л. Отметим, высокие концентрации биогенных элементов характерны для подземных вод [3], что было подтверждено при изучении воды родников в низовьях Дона. В поверхностных пресных водах концентрации минеральных форм биогенных элементов, как правило, гораздо ниже за счёт потребления фитопланктоном и их концентрации нередко снижаются до нулевых значений (явление лимитирования). По полученным результатам измерений (табл. 1), концентрации кремния и нитрит-ионов значительно превосходят нормативы рыбохозяйственных ПДК. Концентрация фосфатов — на уровне ПДК для олиготрофных водоёмов.

Содержание кислорода в водах озера составляло 9,0-10,2 мг/л, степень насыщения кислородом — на уровне 100%. В определённой мере это свидетельствует об отсутствии в водах озера значимого количества легко разлагаемого органического вещества, способного отнимать кислород, например, в ходе процессов гниения или окисления органического вещества.

Высокие концентрации биогенных элементов в водах озера Солёного, несомненно, обусловлены происхождением этих вод – подземным поступлением. За длительный срок существования озера, по-видимому, существенной трансформации его вод не произошло – ни воды донской поймы, ни атмосферные осадки не изменили тип вод. Более того, сведения о непрекращающемся поступлении подземных вод могут объяснить устойчивое состояние вод озера. Высокие концентрации биогенных элементов, судя по превышениям ПДК, некомфортны для стабильного существования рыб в озере. Для питьевого водоснабжения эти воды также непригодны, прежде всего, по превышению порога минерализации. Что касается использования вод озера в рекреационных целях, то по полученным результатам исследования пока не встречено весомых ограничений; но при продолжении работ в первую очередь будут необходимы обследования вод специалистами Санэпиднадзора.

Таблица 1 – Биогенные элементы, pH и минерализация вод оз. Солёного в октябре 2015 г. и сравнение с ПДК

Номер пробы	Мине-	Электро-		Крем	Нит-	Нит-	Аммо-	
	рализа-	проводн.,	Фосфаты, мгР/л	ний,	риты,	раты,	ний-ион,	рН
	ция, г/л	мСм/см		мгЅі/л	$M\Gamma N/\pi$	мгN/л	мгN/л	
1	5	4,72	0,055	2,4	0,654	1,011	0,199	7,6
2	5	4,84	0,047	2,6	0,604	1,546	0,156	7,6
3	5	5,95	0,052	3,0	0,644	1,318	0,207	7,7

4	5,5	6,08	0,044	2,7	0,654	1,526	0,130	7,8
ПДК р/х			0,05 – олиготроф. 0,15 – мезотрофн. 0,2 – эвтрофный	1,0	0,08	40	0,4	6,0 – 9,0
ПДК питьевая	1,0		3,5	10	3,0	45	2,0	6,0 - 9,0
пдк ес					0,5	50		6,5 – 9,5

Примечание: рыбохозяйственный норматив ПДК зависит от трофности водоёма

При обследовании вод озера в апреле 2016 г. расширено число станций отбора проб – как на самом озере, так и в сопредельных водоёмах (рис. 1-3) для оценки взаимного влияния вод.

Распределение станций (рис. 3):

- станция 1 район пляжа на северном берегу;
- станция 2 озеро Безымянное (к северу от Солёного);
- станция 3 район пляжа на западном берегу;
- станция 4 район дачного посёлка на западном берегу;
- станция 5 район дачного посёлка на южном берегу;
- станция 6 дренажный канал в районе дачного посёлка на южном берегу;
- станция 7 вода, проступившая в подвальном помещении дома дачного посёлка «Гидромеханизатор»;
- станция 8 ручей Быстрый за трассой Восточного шоссе в районе юго-восточной оконечности кладбища;
- станция 9 дренажный канал за трассой Восточного шоссе в районе северо-восточной оконечности кладбища.

Результаты определений (табл. 2) свидетельствуют, что концентрация растворённого кислорода, как и в октябре 2015 г., была достаточно высока для обитания гидробионтов и варьировала в пределах 7,89-8,10 мг/л, что близко к насыщению вод кислородом. Некоторое различие в концентрациях кислорода обусловлено различием в температуре вод и ветровой активности в периоды проведения обследований.

Минерализация вод в озере (станции 1-5) сравнительно однородна: при рефрактометрических измерениях по акватории озера вариаций не отмечено; однако при определении электропроводности отмечена вариация округлённо от 5 до 6 мСм/см, что может быть следствием неоднородности температуры вод озера (различие на $1,2^{\circ}$ C), а также уровня минерализации. Отметим, что определение электропроводности гораздо более точная и информативная характеристика минерализации вод. Но для перевода электропроводности (мСм/см) в минерализацию (г/л) необходимо предварительно откалибровать электрометрические измерения независимыми методами обязательно с учётом минерального состава изучаемых вод.

В гидрохимии для этого используют взвешивание остатка при упаривании проб, а также раздельное определение ионного состава и суммирование массы ионов (в настоящее время именно этим методом выполняется измерение минерализации). Для морских вод, имеющих гарантированно постоянный ионный состав, имеются формулы пересчёта электропроводности в солёность. Эти формулы введены в расчётный блок морских электрометрических зондов, способных давать информацию о солёности морских вод непосредственно в единицах промилле (г/кг). Использовать зонды для изучения пресных вод и других вод поверхностных вод суши, а также подземных вод без калибровки неправомерно. Однако измерение непосредственно электропроводности (ЭП) даёт довольно ценные результаты. Так, сопоставление ЭП на станциях 1 и 2 (5,96 и 4,97 мСм/см), расположен-

ных на сопредельных озёрах Солёном и Безымянном, подтверждает поступление вод из Солёного в Безымянное.

Максимальная минерализация вод оз. Солёного в 2015 и 2016 г. приурочена к станции 5 (рис. 2) — 6,08 и 6,09 мСм/см, т.е. здесь довольно стабильная концентрация минеральных солей. Повышенные концентрации приурочены к южному району озера, где большие глубины и где наиболее вероятно поступление свежих порций подземных вод. Более низкие концентрации тяготеют к северной части озера, где глубины меньше.

Измерение ЭП на станции 6, расположенной на дренажном канале менее чем в 100 м от озера, не проводили, но сопоставление данных по минерализации вод (рефрактометрия) – 5,5 и 1,5 мг/л – свидетельствует о малом влиянии Солёного озера на болотистые угодья поймы и дренажный канал. Отметим также интенсивную жёлтую окраску воды на станции 6 и прозрачную на ст. 5, как и повсеместно на других станциях озера.

Возможность поступления токсичных веществ из района кладбища оценивали по данным о минерализации вод на двух участках – юго-восточном (ручей Быстрый) и северо-восточном (рис. 3). Минерализация вод в ручье Быстром с желтоватой водой – $1,5\,$ г/л; минерализация вод в дренажном канале в непосредственной близости от кладбища – $4,0\,$ г/л, что заметно меньше, чем в Солёном озере. Направление градиента солёности от озера к кладбищу, по-видимому, свидетельствует о поступлении вод из озера к кладбищу.

Наконец, вода, накопившаяся в подвале жилого дома в дачном посёлке «Гидромеханизатор» при затоплении поймы имела невысокую минерализацию 1,0–1,5 г/л. Вероятнее всего, эта вода не имела связи с водами озера. Более определённые выводы можно будет сделать после определения ионного состава вод.

Концентрация водородных ионов (pH) в апреле 2016 г. варьировала в сравнительно бо́льших пределах (7,96-8,11), чем в октябре 2015 г., и немного смещена в щелочную область. Несколько повышенные значения pH, как и в октябре 2015 г., приурочены к южной части озера.

Биогенные элементы. Концентрация фосфатов довольно неоднородна по акватории озера (0.074-0.136~мг/л), как и в октябре 2015~г. имеет довольно высокие концентрации, не встречающиеся в продуктивных водоёмах. Необычно высокие концентрации отмечены также для силикатов и аммонийных ионов со значительным превышением ПДК.

таолица 2 – 1 идрохимические характеристики вод оз. Соленого в апреле 2010 г.									
Номер стан- ции	Растворён- ный кисло- род, мг/л	Мине- рализа- ция, г/л	Электропроводность, мСм/см	рН	PO ₄ , мг/л	Si, мг/л	NH ₄ , мг/л		
1	8,05	5,5	5,96	8,05	0,134	3,11	0,243		
2	8,08	5,5	4,97	8,08	0,136	3,01	0,172		
3	8,11	5,5	5,90	8,11	0,108	3,11	0,395		
4	8,09	5,5	6,04	8,09	0,126	3,20	0,907		
5	7,96	5,5	6,09	7,96	0,074	4,53	0,033		
6	7,89	1,5	-	7,89	-	-	-		
7	-	1,5	-	-	-	-	-		
8	-	1,5	-	-	-	-			
9	-	4,0	-	-	-	-	-		
ПДК рыбо-					0,05-олиг. 0,15-мезо.	1,0	0,4		
рыоо-					0,13-MC30.	1,0	0,4		

хоз.

0.2-эвтр.

Таблица 2 – Гидрохимические характеристики вод оз. Солёного в апреле 2016 г.

Выводы

- Химический состав вод Солёного озера по типу существенно отличается от поверхностных вод суши повышенной минерализацией (около 5 г/л) и весьма высокой концентрацией биогенных элементов, превышающих нормативы рыбохозяйственных ПДК.
- Особенности химического состава вод озера определяются его происхождением поступлением вод подземного стока.
- За длительный период существования озера существенной трансформации его вод не произошло, что может быть обусловлено продолжающейся подпиткой озера подземным стоком.
- Использование озера в качестве водоёма рыбохозяйственного назначения, по-видимому, пока нецелесообразно из-за неподходящих условий для рыборазведения.
- •Использование озера в рекреационных целях возможно, но после более полного изучения химического состава вод и оценки санитарного состояния вод и прибрежной зоны.

отбор проб воды в оз. Солёное (апрель 2016 г.)

фиксация проб воды «на кислород» (апрель 2016 г.)

промывка и фиксация проб зообентоса

Рисунок 1 – Общий вид оз. Солёное

Рисунок 2 – Озеро Солёное и сопредельные водоёмы

Рисунок 3 — Район озера Солёного и распределение станций отбора проб