МЕЛКИЕ ЖИВОТНЫЕ В ПИТАНИИ И ДИНАМИКА РАЦИОНА ОБЫКНОВЕННОЙ ЛИСИЦЫ В РЕПРОДУКТИВНЫЙ ПЕРИОД В СТЕПНЫХ ЭКОСИСТЕМАХ НА ОСТРОВЕ ВОДНОМ ОЗЕРА МАНЫЧ-ГУДИЛО

В.Д. Казьмин, Е.А. Ерёменко, Т.В. Блохина, В.В. Стахеев

Аннотация. В рационе обыкновенной лисицы в степных экосистемах острова Водного озера Маныч-Гудило с мая по сентябрь 2017 г. выявлены тенденции увеличения разнообразия видов животных – с 5 до 26: 1 млекопитающее, 1 птица, 1 пресмыкающееся, 23 беспозвоночных. Многолетние выводковые норы лисиц расположены в непосредственной близости с оптимальными стациями обитания мелких животных. Показатель уловистости (активности) общественной полёвки в ловушки Барбера в таких местах изменяется в пределах от 1,1–1,3 (в обычный год) до 3,3–6,4 особи (в годы массового размножения), ящерицы прыткой – 0,2–0,3 особи; динамика сырой массы беспозвоночных в уловах составляет 195–397 грамм. Основная доля беспозвоночных в рационе лисицы приходится на Scarabaeidae (25–42 %): Protaetia ungarica, Pentodon idiota, Copris lunaris.

Ключевые слова: степные экосистемы, остров Водный озера Маныч-Гудило, репродуктивность обыкновенной лисицы, динамика рациона, общественная полёвка, ящерица, беспозвоночные животные.

Наличие и доступность животных кормов в окружающей среде является важнейшим фактором, обеспечивающим жизнедеятельность популяций хищных млекопитающих, а уровень их размножения является реакцией на обилие жертв и условием устойчивого функционирования трофической экосистемы растительность — растительноядные животные — хищники. Обыкновенная лисица (Vulpes vulpes L.) — широко распространенный и довольно хорошо изученный вид хищников Евразии [Огнев, 1931; Формозов, 1937]. Основными экологическими факторами, определяющими распространение и численность популяции лисицы, признаны питание и кормодобывающая деятельность. Спектр ее рациона включает млекопитающих от зайца и более мелких представителей, падаль крупных животных, птиц, пресмыкающихся, беспозвоночных и растительные корма. Вместе с тем установлено, что основным кормом, обеспечивающим массовое размножение лисицы в различных природных зонах, являются мышевидные грызуны, в основном полёвковые [Палваниязов, 1974; Юдин, 1986; Маркина, Приклонский, 2013 и др.].

Основным аспектам биологии обыкновенной лисицы в степях долины Западного Маныча посвящена работа А.Д. Липковича [2014]. Опубликованы материалы, описывающие зависимость динамики численности лисицы от успешности размножения общественной полёвки (*Microtus socialis* Pall.) в степных экосистемах в разные годы [Казьмин, Брагин, 2015; Казьмин, Стахеев, 2016].

В 2016 г. проведены первые исследования по оценке условий обитания и активности мелких животных в различных биотопах, изучено расположение выводковых нор лисицы на изолированной модельной территории — острове Водном озера Маныч-Гудило [Ерёменко и др., 2016; Казьмин, Блохина, 2017].

В настоящей публикации представлены материалы исследований 2017 г. по выявлению оптимальных стаций обитания мелких животных, оценке потенциального запаса животных кормов, расположению многолетних выводковых нор и динамике рациона лисицы в репродуктивный период на острове Водном.

МАТЕРИАЛЫ И МЕТОДЫ

Исследования проведены в мае – сентябре 2017 г. на острове Водном (Южном) (46°28,823′ с.ш. 42°29,744′ в.д.) соленого озера Маныч-Гудило, расположенного в Кумо-Манычской впадине в подзоне сухих дерновиннозлаковых степей [Горбачев, 1974]. Остров шириной 1-3,5 км вытянут с юго-востока на северо-запад на 11-12 км. Рельеф острова равнинный, слабохолмистый, с максимальной относительной высотой 42,6 м над ур. м. Площадь пастбищ островов Водный и Горелый, разделенных пересохшим проливом, составляет 1841 га [Белик и др., 2002]. Соленость воды в озере Маныч-Гудило приближается к средней солености океанской воды (≥35 г/л), а в районе острова Водного составляет 24,6-30,1 г/л [Санджиева, 2006]. Климат характеризуется жарким летом и холодной малоснежной зимой. Средняя месячная температура воздуха в январе составляет -5,5 °C, в июле +24,4 °C. Максимальная температура летом поднимается до +43 °C. Количество осадков - от 379 до 422 мм в год [Подгорная, 2002]. Для острова характерны каштановые, темно-каштановые и лугово-каштановые почвы [Беспалова Е.В., Беспалова Л.А., 2006]. Остров, как и территория всего заповедника, находится в подзоне типчаково-ковыльных степей и выделяется в самостоятельный геоботанический и флористический район Нижнего Дона – долину Маныча [Зозулин, Пашков, 1980]. Наибольшую площадь (около 80 %) на острове занимают долинные сухие дерновиннозлаковые и полынно-дерновиннозлаковые степи [Шмараева, Шишлова, 2005; Дёмина, Чепалыга, 2006]. Основными потребителями растительных кормов на острове являются вольноживущие лошади [Казьмин, Дёмина, 2011]. Источниками питьевой воды для животных служат накопления атмосферных осадков в понижениях рельефа. От материковой части остров отделен протокой шириной около 400 м в наиболее узком месте. При устойчивых морозах озеро замерзает.

В поиске выводковых нор лисиц были обследованы характерные места устройств убежищ (береговые обрывы, крутые склоны, овраги, возвышенности и т.п.). Регистрировали географические координаты норы, число отнорков, занимаемую площадь, количество щенков.

Отлов мелких животных производился в разных частях и биоценозах острова на 10 стационарных ловчих линиях по 10 ловушек (ловушки располагались через 10 м друг от друга по прямой линии). Всего установлено 100 ловушек. Ловушки Барбера представляют собой пластиковые стаканы емкостью 0,5 л, заполненные на одну треть 3 %-ным раствором формалина. В статье представлен сырой (мокрый) вес отловленных на линиях беспозвоночных. Периодичность проверки ловушек – один раз в две недели. Материалы по характеристикам ландшафтного местоположения линий ловушек Барбера представлены в таблице 1; по растительному покрову в пределах стационарных линий ловушек – в таблице 2.

 Таблица 1

 Характеристика ландшафтного местоположения стационарных линий ловушек Барбера

 на острове Водном

Ландшафтное местоположение линий	№ линии	Направ- ление линии	Географические координаты (с.ш.; в.д.)	Высота над ур. моря, м
Плакор восточной экспозиции:				
нижняя часть склона	7	С – Ю	46°28,518′; 042°31,829′	12
средняя часть склона	8	С – Ю	46°28,643′; 042°31,733′	25
плато вершины	9	С – Ю	46°28,770′; 042°31,559′	37
Плакор южной экспозиции:				
средняя часть склона	2	B-3	46°29,049′; 042°28,653′	17
верхняя часть склона	10	B-3	46°28,895′; 042°29,754′	28
плоская вершина плакора	3	B-3	46°29,159′; 042°28,369′	27
Плакор северной экспозиции:				
средняя часть склона	4	B-3	46°29,212′; 042°28,325′	21
равнина подножия	5	B-3	46°29,405′; 042°28,165′	16
Прибрежная солончаковая				
пойма:				
котловинная долина залива	1	B-3	46°28,908′; 042°28,769′	8
плоский северо-восточный берег	6	B-3	46°29,094′; 042°29,607′	7

В июне 2017 г. в разных частях острова на 3 стационарных пробных площадях проведены учеты надземной растительной массы методом укосов на учетных площадках размером 50×50 см в 3-кратной повторности. Произведен учет на 9 площадках. Растительная масса укосов разобрана по группам растений, высушена при температуре 90 °C до постоянного веса и взвешена.

 Таблица 2

 Характеристика растительного покрова в пределах стационарных линий ловушек на острове Водном в июле 2017 г.

№ линии	ОПП,	Высота траво-	Синтаксон, ассоциация	Растительность
1	20–30	7–25	Петросимониевая	Доминирует Petrosimonia triandra. Покрытие почвы растениями относительно равномерное, сплошное. Среди массива петросимонии встречаются контуры Lepidium perfoliatum, Apera spica-venti, Artemisia santonica.
2	100	60–120	Разнотравно- дерновиннозлаковая	Доминируют Agropyron pectinatum, Festuca valesiaca, Stipa lessingiana, Stipa ucrainica, Poa bulbosa, Lepidium perfoliatum, Serratula erucifolia, Тапасеtит achilleifolium. Подстилка отсутствует. Травяной покров равномерный, густой, многоярусный.
3	90–100	80–120	Разнотравно- дерновиннозлаковая	Доминируют Festuca valesiaca, Stipa lessingiana, Stipa ucrainica, Aegilops pectinatum, Poa bulbosa, Serratula erucifolia, Vicia villosa, Vicia hirsuta. Травяной по- кров равномерный, густой, многоярусный.
4	90–100	80–120	Разнотравно- пырейно-типчаковая	Доминируют Festuca valesiaca, Elytrigia repens, Aegilops pectinatum, Poa bulbosa, Vicia villosa, Trifolium arvense, Galium verum. В травостое заметны Nepeta parviflora, Lepidium perfoliatum, Linum austriacum.
5	80–90	50–70	Злаково-разнотравная	Доминируют Festuca valesiaca, Bromus japonicus, Elytrigia repens, Aegilops pectinatum, Poa bulbosa, Galatella villosa, Vicia villosa, Vicia hirsuta, Trifolium arvense, Lepidium perfoliatum. Имеется подстилка толщиной 1 см.

Окончание таблицы 2

№ линии	ОПП,	Высота траво- стоя, см	Синтаксон, ассоциация	Растительность
6	0–80	5–10	Солеросовая	Доминирует Salicornia perennans. ОПП колеблется от 0–5 % до 80 %, в среднем составляя 20–40 %. Пятнами внедряется другая растительность из видов: Lepidium perfoliatum, Artemisia santonica, Apera spicaventi, Poa bulbosa.
7	40–50	60–70	Разнотравно- злаково-полынная	Доминируют Poa angustifolia, Poa bulbosa, Bromus japonicus, Aegilops pectinatum, Elytrigia repens, Poa bulbosa, Artemisia santonica, Artemisia austriaca, Galatella villosa, Vicia villosa, Vicia hirsute, Trifolium arvense. ОПП местами до 90–100 %. Подстилка не выражена.
8	80–90	70–80	Разнотравно- ковыльно-типчаковая	Доминируют Festuca valesiaca, Stipa lessingiana, Aegilops pectinatum, Poa bulbosa, Serratula erucifolia, Tanacetum achilleifolium, Galatella villosa, Vicia villosa, Vicia hirsuta. Подстилка не выражена.
9	80–90	70–80	Разнотравно- дерновиннозлаковая	Доминируют Festuca valesiaca, Aegilops pectinatum, Stipa lessin- giana, Elytrigia repens, Poa bul- bosa, Vicia villosa, Vicia hirsute, Galatella villosa.
10	30	35–50	Разнотравно- злаково-полынная	Доминируют Festuca valesiaca, Aegilops pectinatum, Poa bulbosa, Artemisia santonica, Artemisia austriaca, Trifolium arvense. Подстилка не выражена. Пятнами встречается растительность с обилием видов: Lepidium perfoliatum, Cruciata pedemontana, Serratula erucifolia, Tanacetum achilleifolium.

Примечание: ОПП – общее проективное покрытие.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Условия обитания животных включают метеорологические показатели (температура, влажность), геоботанические показатели растительного покрова, биологические особенности животного населения.

Метереологические условия. Весенне-летний период 2017 г. отличался обилием дождей. По данным метеопоста заповедника, с 26 апреля по 5 июня было 16 дождливых дней, выпало 139 мм осадков (треть годовой нормы), что заметно отразилось на продуктивности растительного покрова и будет показано ниже.

Температура воздуха выше +20 °C установилась в конце мая — начале июня, поднималась в отдельные периоды до +30 °C и выше и держалась до конца августа. При этом дневная температура на поверхности почвы +20 °C наблюдалась уже в конце апреля, а летом достигала +26...+28 °C. Температура почвы, превысившая +20 °C, отмечена в начале июня и летом повышалась временами до +27 °C.

Растительность. В растительном покрове острова Водного зарегистрировано 256 видов высших сосудистых растений. На стационарных пастбищных площадях в 2010 г. зафиксировано 99 видов; в центральной и восточной частях острова с относительно высокой пастбищной нагрузкой видовое богатство степных сообществ ниже и составляет 54–55 видов, в западной части острова с невысоким уровнем выпаса – 78 видов [Казьмин, Пришутова, 2010]. Уровень потребления вольноживущими лошадьми растительных кормов на острове до 2009 г. достигал 70 %; к настоящему времени снижен до 25–30 % [Казьмин, Дёмина, 2011; Казьмин, 2015 и др.].

Растительность в весенне-летних условиях 2017 г. отреагировала высокой продуктивностью – в пределах $421-688 \text{ г/м}^2$ (табл. 3).

Таблица 3 Надземная сухая масса растений на различных участках острова Водного в июне 2017 г. $(M\pm m)$

			Участк	и		
Растения	восточный,	n=3	централы n = 3		северо-запа $n=3$	дный,
	Γ/M^2	%	Γ/M^2	%	Γ/M^2	%
Злаковые (Poaceae)	608,7±63,8	88,5	345,9±71,4	70,2	366,0±85,7	87,0
Осоковые (Cyperaceae)	1,5±1,5	0,2	_	_	_	_
Бобовые (Fabaceae)	3,4±1,7	0,5	2,7±1,5	0,5	7,5±6,2	1,8
Полыни (Artemisia)	17,1±17,1	2,5	3,3±3,3	0,7	20,3±20,3	4,8
Разнотравье	57,3±42,1	8,3	140,7±54,4	28,6	26,9±10,1	6,4
Надземная фитомасса	688,1±66,0	100	492,5±83,4	100	420,7±76,4	100
Мертвая масса	174,9±51,2	100	191,3±16,6	100	207,3±29,7	100

Средняя величина надземной растительной массы на пастбищах острова Водного в середине июня 2017 г. составляла 533,8 \pm 79,9 г/м² (n=9). Доля растений из семейства злаковых изменялась в пределах от 70 % до 89 % и в среднем составляла 82 \pm 6 %; разнотравье достигало 29 % лишь в центральной части (табл. 3).

Надземная масса растений в обычный по влажности год в различных частях острова варьирует в пределах 32–36 ц/га [Казьмин и др., 2013]. В засушливый год (2007) показатели массы растений на острове были значительно меньше – 14–22 ц/га, в надземной растительной массе преобладали злаки (65–90 % от массы травостоя) [Пришутова, 2010].

Выводковые норы лисиц. На острове Водном (площадь степей 18,48 км²) в 2017 г. наблюдалось массовое размножение лисиц, зарегистрировано 13 выводковых нор; плотность составила 0,7 норы/км². Средняя численность щенков в выводке составила 4,9±0,4 особи. Плотность лисицы на острове к осени достигала 4,8 особи/км²; численность — порядка 90 особей. В 2014 г. было зарегистрировано 19 выводковых нор лисицы, то есть на 30 % больше, чем в 2017 г. Массовое размножение у лисиц отмечается каждые 3–4 года в период подъема численности общественной полёвки.

Активность мелких животных. Очевидно, что в стратегии лисицы выбора мест для устройства выводковых нор должны преобладать территории с наибольшим запасом животных кормов. Активность мелких животных, попадающих в ловушки Барбера, характеризует видовой состав и обилие потенциального корма.

Интересны данные по оценке среднего числа попадания (активности) общественной полёвки в ловушки Барбера в разных местах обитания (табл. 4).

Таблица 4 Динамика попадания общественной полёвки и белозубки (*Crocidura* sp.) в цилиндры-ловушки для наземных беспозвоночных на острове Водном в апреле — сентябре 2017 г.

Пото				Ловчие	линии	, ocof	бей				x±Sx
Дата	1	2	3	4	5	6	7	8	9	10	X±3X
04.05	0	0	0	0	0	0	0	1/0	0	1/0	0,2±0,1
23.05	0	0	2/0	5/0	0	0	0	2/0	0	0	0,9±0,5
11.06	0	1/2	4/0	0/2	1/0	0	2/0	3/0	2/0	0/1	1,3±0,4
01.07	0	0	0/1	1/0	0	0	0	1/0	0	0	0,2±0,1
03.09	0	0/2	1/1	0/4	0	0/1	0	1/0	0/1	0/1	0,2±0,1
16.09	0/1	0	1/1	1/0	1/0	0	0/1	0/1	1/1	0	0,4±0,2
x±Sx	+	+	1,3±0,6	1,1±0,8	+	+	+	1,3±0,4	+	+	_

Примечание: в числителе — число полёвок, в знаменателе — число белозубок; $x\pm Sx$ — средняя и ошибка средней попадания полёвок в ловушки на линиях отлова.

Из данных таблицы 5 видно, что общественная полёвка стабильно активна (попадается в ловушки Барбера с показателем 1,1–1,3) на линиях 3, 4 и 8. Аналогичные данные с показателем активности 3,3–6,4 особи получены на этих линиях в начале периода массового размножения полёвки в 2016 г. [Ерёменко и др., 2016]. По всей видимости, такие места следует отнести к оптимальным условиям обитания этих зверьков.

Мелкие животные – ящерица прыткая (*Lacerta agilis* Eichwald), птенцы степного жаворонка (*Melanocorypha calandra* L.), жаба зеленая (*Bufo viridis* Laurenti), гадюка степная (*Pelias renardi* Christoph.) – попадают в ловушки единично и являются дополнительным кормом в питании лисиц [Ерёменко и др., 2016]. Материалы по активности (попадания в ловушки Барбера) ящериц и жаб в 2017 г. представлены в таблице 5.

Таблица 5 Динамика попадания в цилиндры-ловушки Барбера ящериц и жаб на острове Водном в апреле – сентябре 2017 г.

Пото				Лов	вчие ли	инии, с	особей				C
Дата	1	2	3	4	5	6	7	8	9	10	x±Sx
13.04	0	9ж	1ж	0	0	0	0	4ж	0	1ж	+
11.06	0	1*	0	1*	0	0	0	0	0	0	0,2*±0,1
03.09	0	0	0	0	1*	0	0	1*1ж	0	2ж	0,2*±0,1
16.09	0	1*	0	1*	0	0	0	0	1*	0	0,3*±0,2

Примечание: «*» – ящерица, ж – жаба, «+» – единичные попадания в ловушки.

Из данных, представленных в таблице 5, видно, что ящерица (типичный обитатель степей, систематически используемая в пищу лисицей) имеет показатель активности (попадания в ловушки Барбера) 0,2–0,3 с июня по сентябрь в разных местах обитания.

Давно известно, что доля беспозвоночных в рационе лисицы может достигать 17,7 % [Огнев, 1931]. К настоящему времени в долине Западного Маныча насчитывается более 1500 видов беспозвоночных [Арзанов, 2004; Арзанов и др., 2010; Пономарёв, 2010; Миноранский, Решетов, 2012; Полтавский, Брагин, 2012; Пришутова, Арзанов, 2012; Хачиков, 2012 и др.]. Список беспозвоночных животных в рационе лисицы в заповеднике частично определен и приведен в работе [Казьмин и др., 2018].

Правильность стратегии размножающихся лисиц, выбравших охотничью территорию в пределах кормных мест, подтверждает общий вес попадающих в ловушки беспозвоночных (табл. 6).

Таблица 6

Динамика массы (грамм) наземных беспозвоночных, попадающих в цилиндры-ловушки на ловчих линиях на острове Водном в июне — сентябре 2017 г.

		x=Sx	133,6± 27,2	156,4± 34,6	I	98,2± 17,5	113,0± 43,7	I
		10	7,68	46,4	68,1± 21,7	54,9	73,2	64,1± 9,2
	линиях, г	6	186,4	134,1	160,3± 26,2	104,5	118,1	111,3± 6,8
	и на ловчих	8	217,4	85,1	151,3± 66,2	8,161	490,7	341,3± 149,5
	ры-ловушкі	7	303,2	357,6	$330,4\pm 27,2$	94,1	112,6	$103,4\pm 9,3$
	тх в цилинд	9	12,8	6,05	31,9± 19,1	17,3	11,1	14,2± 3,1
	ых, попавш	5	152,8	129,0	140,9± 11,9	8,56	57,2	76,5± 19,3
1	Масса беспозвоночных, попавших в цилиндры-ловушки на ловчих линиях, г	4	105,2	193,5	149,4± 44,2	130,4	55,6	93,0± 37,4
	Macca 6e	3	100,4	166,4	133,4± 33,0	124,0	95,2	109,6± 14,4
		2	131,8	327,3	229,6± 97,8	148,7	105,7	127,2± 21,5
		1	36,6	73,6	55,1± 18,5		10,8	15,8± 127,2± 5,0 21,5
	Пото	Дага	11.06	01.07	х±Sх июнь	03.09	16.09	х±Sх сентябрь

Из таблицы 6 видно, что средняя масса попадающих в ловушки беспозвоночных колеблется в пределах 14–340 г, на линиях № 2, 7, 8 самые высокие показатели – 230–341 г.

В 2016 г. выводковые норы лисиц также находились в пределах линий с высокой средней массой беспозвоночных, попадающих в ловушки (219–340 г) и (195–397 г) [Ерёменко и др., 2016]. В этих местах лисята всегда могут перекусить беспозвоночными, осваивая рацион и приемы охоты.

Рацион обыкновенной лисицы. Известно, что в рационе лисицы обыкновенной насчитывается более 300 видов животных — от мелких млекопитающих до птиц, пресмыкающихся и беспозвоночных, и всё же основная ее пища — грызуны. Они занимают 80–85 % ее рациона. В сутки лисица может съедать не менее 20 мышей и полёвок [Дмитриев, 1998; Липкович, 2014 и др.]. Преобладание в рационе лисицы мышевидных животных явилось основанием относить ее к группе хищников-миофагов.

К настоящему времени определено, что рацион обыкновенной лисицы в степных экосистемах долины Западного Маныча включает 34 вида: 5 — млекопитающих, 3 — птиц, 3 — пресмыкающихся, 23 — беспозвоночных [Казьмин и др., 2018].

В рационе обыкновенной лисицы в степных экосистемах острова Водного озера Маныч-Гудило с мая по сентябрь 2017 г. зарегистрирована динамика разнообразия кормовых объектов – с 5 до 26 видов животных, что обусловлено изменением показателей активности мелких животных (табл. 7).

Снижение в рационе лисицы общественной полёвки с 38 % весной до 2 % осенью 2017 г. обусловлено падением активности в размножении зверьков на большей части территории острова (табл. 4, 7). Аналогичная тенденция наблюдалась в снижении уровня использования ящерицы в корме (табл. 5, 7). Очевидно, с обилием беспозвоночных животных в степных экосистемах к осени связано увеличение их потребления лисицей с 2 до 23 видов. Причем основная доля (25–42 %) в рационе лисицы приходится на Scarabaeidae: *Protaetia ungarica, Pendodon idiota, Copris lunaris* (табл. 7).

ЗАКЛЮЧЕНИЕ

Таким образом, рацион обыкновенной лисицы в степных экосистемах долины Западного Маныча включает 34 вида животных: 5 – млекопитающих, 3 – птиц, 3 – пресмыкающихся, 23 – беспозвоночных. В питании обыкновенной лисицы в степных экосистемах острова Водного озера Маныч-Гудило с мая по сентябрь 2017 г. зарегистрирована динамика разнообразия кормовых объектов с 5 до 26 видов животных, что обусловлено изменением показателей активности мелких животных. Основная доля беспозвоночных в рационе лисицы приходится на Scarabaeidae (25–42 %): Protaetia ungarica, Pentodon idiota, Copris lunaris.

Таблица 7 Показатели активности (уловистости) мелких животных (х±Sx) и рацион обыкновенной лисицы в мае, июне и сентябре на острове Водном озера Маныч-Гудило (2017 г.)

		03cpa Manbin 1 34mil (2017)	1.1	yearing	(-11/107)							
					Меся	Месяц/животные	ОТНЫ	e				
		май				июнь				сентябрь	рь	
Вид корма	активность $n = 10$.0	рацион $n = 19$	н (активность $n = 10$	Б	рацион $n = 16$	он 6	активность $n = 10$	Iß	рацион $n = 12$	н
	абс.	%	абс.	%	абс.	%	абс.	%	абс.	%	абс.	%
Общественная полёвка (Microtus socialis)	1,1±0,5	1,1	12	37,5	$1,3\pm0,4$	1,7	4	5,1	0,4±0,2	1,0	2	2,1
Птицы, в т.ч. степной жаворонок (Melanocorypha calandra L.)	ı	I	1	3,1	I	Ι	1	1,3	I	I	ı	I
Ящерица прыткая (Lacerta agilis Eichwald)	0,3±0,2	0,3	10	31,3	$0,2\pm 0,1$	0,1	9	7,6	0,3±0,2	8,0	4	4,2
Лошадь (падаль)	ı	ı	ı	ı	I	ı	I	ı	ı	ı	4	4,2
Insecta												
Coleoptera												
Scarabaeidae												
Protaetia ungarica	3,6±0,9	3,6	8	25,0	$4,9\pm 1,1$	2,8	31	39,1	-	_	2	2,1
Pentodon idiota	13,0±2,4	13,0	I	ı	18,9±4,3	11,0	7	8,8	6,3±1,5	16,2	16	16,7
Copris lunaris	0,3±0,2	0,3	ı	I	$0,3\pm0,2$	0,1	1	1,3	1	I	40	42,1
Histeridae												
Hister sp.	15,7±3,2	15,7	1	3,1	$33,1\pm 4,2$	19,3	I	-	19,5±5,4	50,0	_	1
Onthophagus sp.	5,1±2,0	5,1	1	_	$8,0\pm 2,7$	4,6	1	1,3	7,3±2,4	18,7	_	1
Aphodius lugens	3,7±1,1	3,7	ı	ı	$7,4\pm 2,0$	4,3	ı	ı	2,2±0,9	5,6	_	1,1
Brachyceridae												
Brachycerus sinuatus	1,5±0,8	1,5	ı	ı	$2,3\pm 1,7$	1,3	3	3,8	I	I	ı	ı
Silphidae												

Nicrophorus sp.	37,1±16,0	37,1	ı	ı	52,6±30,1	30,7	-	1,3	ı	ı	ı	ı
Silpha sp.	1,3±0,8	1,3	Ι	I	1,6±0,9	6,0	-	1,3	ı	I	ı	ı
Carabidae												
Carabidae sp.	_	_	_	_	_	_	1	1,3	_	-	_	ı
Zabrus spinipes	$1,5\pm0,8$	1,5	_	-	$5,6\pm1,4$	3,2	1	1,3	-	-	6	9,4
Zabrus tenebrioides	4,1±1,1	4,1	ı	ı	12,1±2,9	7,0	ı	ı	ı	ı	ı	ı
Carabus sp.	$1,2\pm0,5$	1,2	ı	ı	3,8±1,3	2,2	1	1,3	ı	I	ı	ı
Orthoptera												
Orthoptera sp.	2,8±0,8	2,8	Ι	I	6,9±1,5	4,0	2	2,5	ı	I	ı	ı
Tettigoniidae												
Tettigonidae gen. sp.	_	_	_	-	1	_	ı	_	1	-	4	4,2
Decticus verrucivorus	$1,1\pm0,5$	1,1	_	ı	$3,0\pm0,8$	1,7	I	_	I	-	2	2,1
Platycleis sp.	_	_	_	-	_	_	2	2,5	-	_	4	4,2
Acrididae												
Calliptamus italicus	$3,2\pm0,7$	3,2	_	Ι	5,5±1,1	3,2	ı	Ι	-	ı	4	4,2
Gryllotalpidae												
Gryllotalpa sp.	I	I	I	I	I	I	10	12,6	I	ı	-	1,1
Gryllotalpa gryllotalpa	$0,6\pm 0,4$	0,6	_	_	$0,6\pm0,5$	0,3	2	2,5	1,3±0,9	3,3	-	I
Gryllidae												
Gryllus campestris	$1,8\pm0,6$	1,8	_	_	$2,7\pm0,9$	1,5	1	1,3	1,7±0,7	4,4	-	I
Modicogryllus frontalis	_	-	_	-	-	_	2	2,5	-	-	1	ı
Hemiptera												
Hemiptera gen. sp.	Ι	_	_	_	I	Ι	1	1,3	1	Ι	1	1,1
Mantis religiosa	$0,1\pm 0,1$	0,1	_	-	$0,3\pm 0,2$	0,1	Ι	-	I	Ι	2	2,1
Всего	99,1	100	32	100	171,1	100	42	100	39,0	100	95	100

СПИСОК ЛИТЕРАТУРЫ

Арзанов Ю.Г. Обзор палеарктических долгоносиков трибы Cleonini (Coleoptera: Curculionidae, Lixinae), обитающих на сложноцветных // Биоразнообразие заповедника «Ростовский» и его охрана: труды государственного природного заповедника «Ростовский». Ростов н/Д: Донской издательский дом, 2004. С. 209–227.

Арзанов Ю.Г., Пришутова З.Г., Евсюков А.П. Жужелицы (Coleoptera, Carabidae) заповедника «Ростовский» // Мониторинг природных экосистем долины Маныча. Труды ФГУ «Государственный природный заповедник "Ростовский"». Вып. 4. Ростов н/Д: Изд-во СКНЦ ВШ ЮФУ, 2010. C.~46-105.

Белик В.П., Шмараева А.Н., Шишлова Ж.Н., Фуштей Т.В. Природные условия верхней части долины Западного Маныча и современное состояние основных экосистем // Наземные и водные экосистемы заповедника «Ростовский» и его охранной зоны. Труды государственного природного заповедника «Ростовский». Ростов н/Д: Изд-во Ростовского пед. ун-та, 2002. Вып. 2. С. 9–38.

Беспалова Е.В., Беспалова Л.А. Ландшафтно-фациальное разнообразие острова Водный заповедника «Ростовский» // Современные проблемы аридных и семиаридных экосистем юга России. Ростов н/Д: Изд-во ЮНЦ РАН, 2006. С. 313–327.

Горбачев Б.Н. Растительность и естественные кормовые угодья Ростовской области (пояснительный текст к картам). Ростов н/Д, 1974. 152 с.

Дёмина О.Н., Чепалыга А.Л. Этапы формирования и современное состояние растительного покрова степей в межконтинентальной зоне Европы и Азии // Роль особо охраняемых природных территорий в сохранении биоразнообразия: мат-лы Междунар. науч.-практ. конф., посвящ. 10-летию Государственного природного заповедника «Ростовский». Ростов н/Д, 2006. С. 185–192.

Дмитриев Ю.Д. Соседи по планете. Млекопитающие. М.: Олимп; ООО «Издательство АСТ», 1998. 400 с.

Ерёменко Е.А., Казьмин В.Д., Блохина Т.В. Условия обитания, активность мелких животных и распределение выводковых нор лисицы (Vulpes vulpes) на острове Водном озера Маныч-Гудило // Экосистемный мониторинг долины Западного Маныча: итоги и перспективы. К 20-летию Государственного природного биосферного заповедника «Ростовский». Труды Государственного природного биосферного заповедника «Ростовский». Вып. 6. Ростов н/Д: ООО «Фонд науки и образования», 2016. С. 258–276.

Зозулин Г.М., Пашков Г.Д. Геоботаническое районирование, Нижний Дон (Ростовская область) // Растительные ресурсы. Ч. 1. Ростов н/Д, 1980. С. 40–48.

Казьмин В.Д. Целенаправленное регулирование численности свободноживущих лошадей на острове Водном — создание тарпаноподобных лошадей // Сохранение разнообразия животных и охотничье хозяйство России: мат-лы 6-й Междунар. науч.практ. конф. Реутов: ЭРА, 2015. С. 256–260.

Казьмин В.Д., Блохина Т.В. Репродуктивная стратегия обыкновенной лисицы (*Vulpes vulpes*) в степных экосистемах на острове Водном озера Маныч-Гудило в 2013–2016 гг. // Сохранение разнообразия животных и охотничье хозяйство России: мат-лы 7-й Междунар. науч.-практ. конф. Иваново: ПресСто, 2017. С. 262–265.

Казьмин В.Д., Брагин А.Е. Репродуктивность обыкновенной лисицы (*Vulpes vulpes*) в степных экосистемах заповедника «Ростовский» // Сохранение разнообразия животных и охотничье хозяйство России: мат-лы 6-й Междунар. науч.-практ. конф. Реутов: ЭРА, 2015. С. 260–263.

Казьмин В.Д., Дёмина О.Н. Заповедная степь и табун вольных лошадей (*Equus caballus*): проблемы взаимоотношений // Бюлл. МОИП. Отд. биологический. 2011. Т. 116. Вып. 4. С. 3–11.

Казьмин В.Д., Дёмина О.Н., Позднякова М.К., Розенфельд С.Б., Абатуров Б.Д. Современное состояние растительных кормовых ресурсов и избирательность питания вольноживущей лошади (*Equus caballus*) на степном острове озера Маныч-Гудило // Зоологический журнал. 2013. Т. 92. № 2. С. 231–237.

Казьмин В.Д., Еременко Е.А., Блохина Т.В., Стахеев В.В., Терсков Е.Н., Шохин И.В., Арзанов Ю.Г. Хищничество корсака и обыкновенной лисицы на животных в репродуктивный период в степных экосистемах долины Западного Маныча // Степи Северной Евразии: мат-лы VIII Междунар. симпозиума. Оренбург, 2018. С. 435–438.

Казьмин В.Д., Пришутова 3.Г. Надземная растительная масса на острове Водный в июне 2010 г. // Летопись природы 2010 г. Слежение за ходом естественных процессов эталонных степных экосистем заповедника «Ростовский». Пос. Орловский, Ростовская область. Архив. 2010. С. 114–137.

Казьмин В.Д., Стахеев В.В. Репродуктивность обыкновенной лисицы и общественной полёвки в степных экосистемах долины Западного Маныча // Териофауна России и сопредельных территорий (X съезд Териологического общества при РАН). М.: Товарищество научных изданий КМК, 2016. С. 155.

Липкович А.Д. Лисы долины Западного Маныча // Степной бюллетень. № 42. Осень 2014. С. 54–56.

Маркина Т.А., Приклонский С.Г. Взаимосвязь динамики мышевидных грызунов и лисицы // Сохранение разнообразия животных и охотничье хозяйство России: мат-лы 5-й Междунар. науч.-практ. конф. М., 2013. С. 414—416.

Миноранский В.А., Решетов А.А. Материалы по фауне муравьев (Hymenoptera: Formicidae) Государственного природного биосферного заповедника «Ростовский» // Биоразнообразие долины Западного Маныча. Труды Государственного природного биосферного заповедника «Ростовский». Вып. 5. Ростов н/Д: Изд-во СКНЦ ВШ ЮФУ, 2012. С. 80–95.

Огнев С.И. Хищные млекопитающие // Звери Восточной Европы и Северной Азии. М.; Л.: Главнаука, 1931. Т. 2. С. 266–361.

Палваниязов М. Хищные звери пустынь Средней Азии. Нукус: Каракалпакстан, 1974. 320 с.

Подгорная Я.Ю. Краткий физико-географический обзор района заповедника «Ростовский» // Труды государственного заповедника «Ростовский». Ростов н/Д: Изд-во «Центры валеологии вузов России», 2002. Вып. 1. С. 24–32.

Полтавский А.Н., Брагин А.Е. Фауна разноусых чешуекрылых (Lepidoptera: Heterocera) Государственного природного биосферного заповедника «Ростовский» // Биоразнообразие долины Западного Маныча. Труды Государственного природного биосферного заповедника «Ростовский». Вып. 5. Ростов н/Д: Изд-во СКНЦ ВШ ЮФУ, 2012. С. 95–127.

Пономарёв А.В. Пауки (Arachnida: Aranei) заповедника «Ростовский»: кадастр видов и особенности фауны // Мониторинг природных экосистем долины Маныча. Труды Φ ГУ «Государственный природный заповедник "Ростовский"». Вып. 4. Ростов н/Д: Изд-во СКНЦ ВШ Ю Φ У, 2010. *С. 105–125*.

Пришутова 3.Г. Одичавшие лошади (*Equus caballus*) как компонент охраняемых степных экосистем в заповеднике «Ростовский» // Экология. 2010. № 1. С. 121–133.

Пришутова З.Г., Арзанов Ю.Г. Герпетобионтные жесткокрылые Островного и Стариковского участков Государственного природного биосферного заповедника «Ростовский» // Биоразнообразие долины Западного Маныча. Труды Государственного природного биосферного заповедника «Ростовский». Вып. 5. Ростов н/Д: Изд-во СКНЦ ВШ ЮФУ, 2012. С. 127–159.

Санджиева А.Г. Качественный состав воды озера Маныч-Гудило // Роль особо охраняемых природных территорий в сохранении биоразнообразия: мат-лы Междунар. науч.-практ. конф., посвященной 10-летию Государственного природного заповедника «Ростовский». Ростов н/Д: Изд-во Рост. ун-та, 2006. С. 383—384.

 Φ ормозов А.Н. Программа и методика работ наблюдательных пунктов по учету мышевидных грызунов в целях прогноза их массового появления // Ученые записки МГУ. М., 1937. Вып. 11. С. 78–119.

Хачиков Э.А. Жуки-стафилины (Coleoptera, Staphylinidae) Государственного природного биосферного заповедника «Ростовский» и сопредельных территорий // Биоразнообразие долины Западного Маныча. Труды Государственного природного биосферного заповедника «Ростовский». Вып. 5. Ростов н/Д: Изд-во СКНЦ ВШ ЮФУ, 2012. С. 159–177.

Шмараева А.Н., Шишлова Ж.Н. Долинные степи в заповеднике «Ростовский» // Состояние особо охраняемых территорий европейской части России: сб. науч. ст., посвящ. 70-летию Хопёрского заповедника. Воронеж, 2005. С. 194–198.

IOдин В.Г. Лисицы Дальнего Востока СССР. Владивосток: ДВНЦ АН СССР, 1986. 284 с.

СВЕДЕНИЯ ОБ АВТОРАХ

Казьмин Владимир Дмитриевич – д-р биол. наук, в. н. с. Государственного заповедника «Ростовский», vladimir-kazmin@mail.ru

Ерёменко Елена Алексеевна – Академия биологии и биотехнологии им. Д.И. Ивановского ЮФУ, eremen@yandex.ru

Блохина Татьяна Владимировна – канд. биол. наук, доцент, Российский государственный аграрный университет – MCXA им. К.А. Тимирязева; aida-cat@yandex.ru

Стахеев Валерий Владимирович – канд. биол. наук, в. н. с. ЮНЦ РАН; stvaleriy@yandex.ru